--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - ja datasets: - msfm/ichikara-instruction-all - elyza/ELYZA-tasks-100 --- # Uploaded model - **Developed by:** satami - **License:** apache-2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) ## 出力方法 ```python from unsloth import FastLanguageModel from peft import PeftModel from tqdm import tqdm import torch import json import re #モデルのロード max_seq_length = 1024 dtype = None load_in_4bit = True model_id = "llm-jp/llm-jp-3-13b" model, tokenizer = FastLanguageModel.from_pretrained( model_name = model_id, dtype = dtype, load_in_4bit = load_in_4bit, trust_remote_code = True ) #RoLAアダプタのロード adapter_id = "satami/llm-jp-3-13b_LoRA_with_policy_v2" HF_TOKEN = "your_token" model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN) #データセットのロード datasets = [] with open("../../dataset/elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" #タスクの実行 FastLanguageModel.for_inference(model) results = [] for dt in tqdm(datasets): input = dt["input"] prompt = f"""以下は、タスクを説明する指示です。自分が何を出力するかを簡潔に答えた後、要求を適切に満たす応答を書きなさい。 ### 指示:{input} ### タスク:""" inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens = 1024, use_cache = True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### タスク:')[-1] results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) #本モデルはタスクの要約と応答を出力するので、タスクの要約を出力から削除します。 for i in range(len(results)): results[i]["output"] = results[i]["output"].split("### 応答:")[-1] # jsonlで保存 new_model_id = "ichikara-elyza_r=16_with-policy" with open(f"{new_model_id}_output.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n') ```