--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer model-index: - name: reward-model-out results: [] --- # reward-model-out This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6273 - eval_accuracy: 0.6449 - eval_precision: 0.6600 - eval_recall: 0.8789 - eval_f1: 0.7539 - eval_runtime: 110.7892 - eval_samples_per_second: 35.536 - eval_steps_per_second: 8.891 - epoch: 0.51 - step: 600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.14.1