File size: 9,238 Bytes
8042bb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25c3525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8042bb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
728c45a
 
 
 
 
 
 
 
 
 
 
5c12649
 
 
 
 
 
 
 
 
 
 
25c3525
 
 
 
 
 
 
 
 
 
 
8042bb9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
license: other
tags:
- generated_from_keras_callback
model-index:
- name: sayakpaul/mit-b0-finetuned-sidewalks
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# sayakpaul/mit-b0-finetuned-sidewalks

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.6505
- Validation Loss: 0.6601
- Validation Mean Iou: 0.2774
- Validation Mean Accuracy: 0.3400
- Validation Overall Accuracy: 0.8158
- Validation Per Category Iou: [0.         0.67274147 0.83098512 0.46721789 0.48492165 0.28810209
        nan 0.30676731 0.41116935 0.         0.73679658 0.
 0.                nan 0.         0.47421792 0.         0.
 0.66232704 0.         0.40729478 0.27226345 0.                nan
 0.         0.22211219 0.00310618 0.         0.81170746 0.73786496
 0.88368738 0.         0.07716099 0.12776685 0.        ]
- Validation Per Category Accuracy: [0.         0.80048159 0.93309497 0.558633   0.56439564 0.38053253
        nan 0.46424754 0.60183499 0.         0.92479351 0.
 0.                nan 0.         0.60493457 0.         0.
 0.88399244 0.         0.55428873 0.34754253 0.                nan
 0.         0.25438648 0.00310618 0.         0.90931833 0.91190458
 0.94609539 0.         0.08323588 0.15250888 0.        ]
- Epoch: 3

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 6e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Validation Mean Iou | Validation Mean Accuracy | Validation Overall Accuracy | Validation Per Category Iou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Validation Per Category Accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Epoch |
|:----------:|:---------------:|:-------------------:|:------------------------:|:---------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----:|
| 1.5309     | 0.9380          | 0.1674              | 0.2153                   | 0.7545                      | [0.00000000e+00 5.50637719e-01 7.61499932e-01 6.48396077e-04
 3.56923200e-01 9.75833116e-02 0.00000000e+00 2.82588573e-02
 5.28802378e-02 0.00000000e+00 5.93637894e-01 0.00000000e+00
 0.00000000e+00            nan 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 5.53393589e-01 0.00000000e+00
 1.50378244e-01 1.75413833e-02 0.00000000e+00            nan
 0.00000000e+00 2.76097981e-02 0.00000000e+00 0.00000000e+00
 7.86211179e-01 7.05492777e-01 8.34315629e-01 0.00000000e+00
 0.00000000e+00 7.43899822e-03 0.00000000e+00] | [0.00000000e+00 7.08723416e-01 9.71019213e-01 6.48665345e-04
 4.09438347e-01 1.09468057e-01            nan 3.05932982e-02
 5.44133505e-02 0.00000000e+00 8.74063503e-01 0.00000000e+00
 0.00000000e+00            nan 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 8.66648886e-01 0.00000000e+00
 1.61194155e-01 1.77691783e-02 0.00000000e+00            nan
 0.00000000e+00 2.81195635e-02 0.00000000e+00 0.00000000e+00
 9.17500033e-01 8.30294930e-01 9.02491399e-01 0.00000000e+00
 0.00000000e+00 7.77243386e-03 0.00000000e+00] | 0     |
| 0.8850     | 0.7741          | 0.2215              | 0.2711                   | 0.7807                      | [0.         0.56319416 0.79436978 0.22447649 0.37746306 0.2182132
        nan 0.17433499 0.35240193 0.         0.64391654 0.
 0.                nan 0.         0.         0.         0.
 0.61824159 0.         0.36925143 0.09610409 0.                nan
 0.         0.23049759 0.         0.         0.79662258 0.72121144
 0.85940151 0.         0.00144295 0.04769959 0.        ]                                                                                                                                                                 | [0.         0.7334003  0.94650286 0.24751216 0.4478931  0.27208929
        nan 0.22448353 0.45667969 0.         0.92555657 0.
 0.                nan 0.         0.         0.         0.
 0.85871282 0.         0.43579563 0.09928831 0.                nan
 0.         0.25660062 0.         0.         0.93127726 0.85151776
 0.9323404  0.         0.00144459 0.05442322 0.        ]                                                                                                                                                                | 1     |
| 0.7280     | 0.6948          | 0.2608              | 0.3178                   | 0.8009                      | [0.         0.5833859  0.81088427 0.37870695 0.42920979 0.26901769
        nan 0.26967864 0.37309309 0.         0.73143999 0.
 0.                nan 0.         0.30875952 0.         0.
 0.64460152 0.         0.36681761 0.20754432 0.                nan
 0.         0.27251923 0.01267829 0.         0.82057447 0.76705857
 0.86538224 0.         0.13369659 0.09996937 0.        ]                                                                                                                                                                | [0.         0.71016102 0.95278314 0.44786052 0.50520329 0.32109583
        nan 0.37049571 0.63857903 0.         0.88589428 0.
 0.                nan 0.         0.34012586 0.         0.
 0.88972948 0.         0.49551485 0.25354461 0.                nan
 0.         0.3309279  0.01267829 0.         0.93305477 0.86649237
 0.94355496 0.         0.14937745 0.12218876 0.        ]                                                                                                                                                                | 2     |
| 0.6505     | 0.6601          | 0.2774              | 0.3400                   | 0.8158                      | [0.         0.67274147 0.83098512 0.46721789 0.48492165 0.28810209
        nan 0.30676731 0.41116935 0.         0.73679658 0.
 0.                nan 0.         0.47421792 0.         0.
 0.66232704 0.         0.40729478 0.27226345 0.                nan
 0.         0.22211219 0.00310618 0.         0.81170746 0.73786496
 0.88368738 0.         0.07716099 0.12776685 0.        ]                                                                                                                                                                | [0.         0.80048159 0.93309497 0.558633   0.56439564 0.38053253
        nan 0.46424754 0.60183499 0.         0.92479351 0.
 0.                nan 0.         0.60493457 0.         0.
 0.88399244 0.         0.55428873 0.34754253 0.                nan
 0.         0.25438648 0.00310618 0.         0.90931833 0.91190458
 0.94609539 0.         0.08323588 0.15250888 0.        ]                                                                                                                                                                | 3     |


### Framework versions

- Transformers 4.24.0
- TensorFlow 2.9.2
- Datasets 2.6.1
- Tokenizers 0.13.1