File size: 6,849 Bytes
8042bb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
728c45a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8042bb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
728c45a
 
 
 
 
 
 
 
 
 
 
8042bb9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: other
tags:
- generated_from_keras_callback
model-index:
- name: sayakpaul/mit-b0-finetuned-sidewalks
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# sayakpaul/mit-b0-finetuned-sidewalks

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.8850
- Validation Loss: 0.7741
- Validation Mean Iou: 0.2215
- Validation Mean Accuracy: 0.2711
- Validation Overall Accuracy: 0.7807
- Validation Per Category Iou: [0.         0.56319416 0.79436978 0.22447649 0.37746306 0.2182132
        nan 0.17433499 0.35240193 0.         0.64391654 0.
 0.                nan 0.         0.         0.         0.
 0.61824159 0.         0.36925143 0.09610409 0.                nan
 0.         0.23049759 0.         0.         0.79662258 0.72121144
 0.85940151 0.         0.00144295 0.04769959 0.        ]
- Validation Per Category Accuracy: [0.         0.7334003  0.94650286 0.24751216 0.4478931  0.27208929
        nan 0.22448353 0.45667969 0.         0.92555657 0.
 0.                nan 0.         0.         0.         0.
 0.85871282 0.         0.43579563 0.09928831 0.                nan
 0.         0.25660062 0.         0.         0.93127726 0.85151776
 0.9323404  0.         0.00144459 0.05442322 0.        ]
- Epoch: 1

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 6e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Validation Mean Iou | Validation Mean Accuracy | Validation Overall Accuracy | Validation Per Category Iou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Validation Per Category Accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Epoch |
|:----------:|:---------------:|:-------------------:|:------------------------:|:---------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----:|
| 1.5309     | 0.9380          | 0.1674              | 0.2153                   | 0.7545                      | [0.00000000e+00 5.50637719e-01 7.61499932e-01 6.48396077e-04
 3.56923200e-01 9.75833116e-02 0.00000000e+00 2.82588573e-02
 5.28802378e-02 0.00000000e+00 5.93637894e-01 0.00000000e+00
 0.00000000e+00            nan 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 5.53393589e-01 0.00000000e+00
 1.50378244e-01 1.75413833e-02 0.00000000e+00            nan
 0.00000000e+00 2.76097981e-02 0.00000000e+00 0.00000000e+00
 7.86211179e-01 7.05492777e-01 8.34315629e-01 0.00000000e+00
 0.00000000e+00 7.43899822e-03 0.00000000e+00] | [0.00000000e+00 7.08723416e-01 9.71019213e-01 6.48665345e-04
 4.09438347e-01 1.09468057e-01            nan 3.05932982e-02
 5.44133505e-02 0.00000000e+00 8.74063503e-01 0.00000000e+00
 0.00000000e+00            nan 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 8.66648886e-01 0.00000000e+00
 1.61194155e-01 1.77691783e-02 0.00000000e+00            nan
 0.00000000e+00 2.81195635e-02 0.00000000e+00 0.00000000e+00
 9.17500033e-01 8.30294930e-01 9.02491399e-01 0.00000000e+00
 0.00000000e+00 7.77243386e-03 0.00000000e+00] | 0     |
| 0.8850     | 0.7741          | 0.2215              | 0.2711                   | 0.7807                      | [0.         0.56319416 0.79436978 0.22447649 0.37746306 0.2182132
        nan 0.17433499 0.35240193 0.         0.64391654 0.
 0.                nan 0.         0.         0.         0.
 0.61824159 0.         0.36925143 0.09610409 0.                nan
 0.         0.23049759 0.         0.         0.79662258 0.72121144
 0.85940151 0.         0.00144295 0.04769959 0.        ]                                                                                                                                                                 | [0.         0.7334003  0.94650286 0.24751216 0.4478931  0.27208929
        nan 0.22448353 0.45667969 0.         0.92555657 0.
 0.                nan 0.         0.         0.         0.
 0.85871282 0.         0.43579563 0.09928831 0.                nan
 0.         0.25660062 0.         0.         0.93127726 0.85151776
 0.9323404  0.         0.00144459 0.05442322 0.        ]                                                                                                                                                                | 1     |


### Framework versions

- Transformers 4.24.0
- TensorFlow 2.9.2
- Datasets 2.6.1
- Tokenizers 0.13.1