--- license: other tags: - generated_from_keras_callback model-index: - name: sayakpaul/mit-b0-finetuned-sidewalks results: [] --- # sayakpaul/mit-b0-finetuned-sidewalks This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4458 - Validation Loss: 0.6356 - Validation Mean Iou: 0.3066 - Validation Mean Accuracy: 0.3759 - Validation Overall Accuracy: 0.8311 - Validation Per Category Iou: [0. 0.66186021 0.83364406 0.48364478 0.53627121 0.27582606 nan 0.35739504 0.41076225 0. 0.77850446 0. 0. nan 0. 0.50299945 0. 0. 0.70340595 0.01741996 0.40137463 0.32885851 0. nan 0. 0.32114603 0.05439069 0. 0.84655176 0.80081688 0.90314194 0.00292704 0.24599153 0.34524384 0. ] - Validation Per Category Accuracy: [0. 0.74699777 0.95226432 0.65030589 0.70566846 0.35272168 nan 0.47019568 0.71372001 0. 0.91011138 0. 0. nan 0. 0.62189092 0. 0. 0.87945472 0.01742109 0.52016264 0.36958738 0. nan 0. 0.3993222 0.05508716 0. 0.928178 0.89821483 0.96116851 0.0033765 0.40579212 0.46633448 0. ] - Epoch: 8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 6e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Validation Mean Iou | Validation Mean Accuracy | Validation Overall Accuracy | Validation Per Category Iou | Validation Per Category Accuracy | Epoch | |:----------:|:---------------:|:-------------------:|:------------------------:|:---------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----:| | 1.5309 | 0.9380 | 0.1674 | 0.2153 | 0.7545 | [0.00000000e+00 5.50637719e-01 7.61499932e-01 6.48396077e-04 3.56923200e-01 9.75833116e-02 0.00000000e+00 2.82588573e-02 5.28802378e-02 0.00000000e+00 5.93637894e-01 0.00000000e+00 0.00000000e+00 nan 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.53393589e-01 0.00000000e+00 1.50378244e-01 1.75413833e-02 0.00000000e+00 nan 0.00000000e+00 2.76097981e-02 0.00000000e+00 0.00000000e+00 7.86211179e-01 7.05492777e-01 8.34315629e-01 0.00000000e+00 0.00000000e+00 7.43899822e-03 0.00000000e+00] | [0.00000000e+00 7.08723416e-01 9.71019213e-01 6.48665345e-04 4.09438347e-01 1.09468057e-01 nan 3.05932982e-02 5.44133505e-02 0.00000000e+00 8.74063503e-01 0.00000000e+00 0.00000000e+00 nan 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.66648886e-01 0.00000000e+00 1.61194155e-01 1.77691783e-02 0.00000000e+00 nan 0.00000000e+00 2.81195635e-02 0.00000000e+00 0.00000000e+00 9.17500033e-01 8.30294930e-01 9.02491399e-01 0.00000000e+00 0.00000000e+00 7.77243386e-03 0.00000000e+00] | 0 | | 0.8850 | 0.7741 | 0.2215 | 0.2711 | 0.7807 | [0. 0.56319416 0.79436978 0.22447649 0.37746306 0.2182132 nan 0.17433499 0.35240193 0. 0.64391654 0. 0. nan 0. 0. 0. 0. 0.61824159 0. 0.36925143 0.09610409 0. nan 0. 0.23049759 0. 0. 0.79662258 0.72121144 0.85940151 0. 0.00144295 0.04769959 0. ] | [0. 0.7334003 0.94650286 0.24751216 0.4478931 0.27208929 nan 0.22448353 0.45667969 0. 0.92555657 0. 0. nan 0. 0. 0. 0. 0.85871282 0. 0.43579563 0.09928831 0. nan 0. 0.25660062 0. 0. 0.93127726 0.85151776 0.9323404 0. 0.00144459 0.05442322 0. ] | 1 | | 0.7280 | 0.6948 | 0.2608 | 0.3178 | 0.8009 | [0. 0.5833859 0.81088427 0.37870695 0.42920979 0.26901769 nan 0.26967864 0.37309309 0. 0.73143999 0. 0. nan 0. 0.30875952 0. 0. 0.64460152 0. 0.36681761 0.20754432 0. nan 0. 0.27251923 0.01267829 0. 0.82057447 0.76705857 0.86538224 0. 0.13369659 0.09996937 0. ] | [0. 0.71016102 0.95278314 0.44786052 0.50520329 0.32109583 nan 0.37049571 0.63857903 0. 0.88589428 0. 0. nan 0. 0.34012586 0. 0. 0.88972948 0. 0.49551485 0.25354461 0. nan 0. 0.3309279 0.01267829 0. 0.93305477 0.86649237 0.94355496 0. 0.14937745 0.12218876 0. ] | 2 | | 0.6505 | 0.6601 | 0.2774 | 0.3400 | 0.8158 | [0. 0.67274147 0.83098512 0.46721789 0.48492165 0.28810209 nan 0.30676731 0.41116935 0. 0.73679658 0. 0. nan 0. 0.47421792 0. 0. 0.66232704 0. 0.40729478 0.27226345 0. nan 0. 0.22211219 0.00310618 0. 0.81170746 0.73786496 0.88368738 0. 0.07716099 0.12776685 0. ] | [0. 0.80048159 0.93309497 0.558633 0.56439564 0.38053253 nan 0.46424754 0.60183499 0. 0.92479351 0. 0. nan 0. 0.60493457 0. 0. 0.88399244 0. 0.55428873 0.34754253 0. nan 0. 0.25438648 0.00310618 0. 0.90931833 0.91190458 0.94609539 0. 0.08323588 0.15250888 0. ] | 3 | | 0.5810 | 0.6610 | 0.2893 | 0.3501 | 0.8173 | [0. 0.64601276 0.81866457 0.46535767 0.50543168 0.28373075 nan 0.33004533 0.40404147 0. 0.76223358 0. 0. nan 0. 0.52641725 0. 0. 0.65767205 0. 0.39175791 0.25442534 0. nan 0. 0.30521727 0.03951998 0. 0.82740493 0.75297779 0.88342457 0. 0.20580056 0.19670152 0. ] | [0. 0.73558164 0.95660246 0.55532275 0.61966264 0.32151473 nan 0.47707119 0.54010289 0. 0.91394179 0. 0. nan 0. 0.63758616 0. 0. 0.88501875 0. 0.56845175 0.29123233 0. nan 0. 0.38980592 0.03987322 0. 0.92751577 0.84695264 0.93293488 0. 0.32582376 0.23722217 0. ] | 4 | | 0.5288 | 0.6364 | 0.3033 | 0.3717 | 0.8260 | [0. 0.64487768 0.8377146 0.48707167 0.50884928 0.34176886 nan 0.34887555 0.45218372 0. 0.75715898 0. 0. nan 0. 0.5222127 0. 0. 0.69808156 0. 0.42644563 0.35474225 0. nan 0. 0.28867161 0.03742875 0. 0.83332433 0.7818028 0.88638015 0.00137015 0.2124537 0.28445749 0. ] | [0. 0.74189035 0.92893266 0.625763 0.62296571 0.54003942 nan 0.49591369 0.64509343 0. 0.92976992 0. 0. nan 0. 0.66209669 0. 0. 0.86461114 0. 0.54041026 0.4796133 0. nan 0. 0.33899822 0.03746434 0. 0.92987636 0.92582211 0.96099073 0.00151698 0.26040449 0.36377671 0. ] | 5 | | 0.4936 | 0.6299 | 0.2980 | 0.3599 | 0.8264 | [0. 0.66237142 0.83413529 0.50181208 0.52374508 0.34163702 nan 0.35933641 0.43258492 0. 0.76814068 0. 0. nan 0. 0.49822203 0. 0. 0.65539745 0. 0.3955574 0.32740018 0. nan 0. 0.31514128 0.04382747 0. 0.84497596 0.79425761 0.89798116 0.00201253 0.18109898 0.15596963 0. ] | [0. 0.72498823 0.94241029 0.63156495 0.72628664 0.44784858 nan 0.50327208 0.59434829 0. 0.91352866 0. 0. nan 0. 0.62105434 0. 0. 0.90132969 0. 0.4624487 0.42016669 0. nan 0. 0.37948533 0.04393027 0. 0.94520928 0.88447616 0.94729824 0.00247937 0.23226938 0.19132714 0. ] | 6 | | 0.4528 | 0.6340 | 0.2980 | 0.3664 | 0.8212 | [0. 0.60868123 0.83498291 0.18287132 0.46939835 0.31058578 nan 0.34162709 0.445366 0. 0.78966215 0. 0. nan 0. 0.53583212 0. 0. 0.71233622 0.03447214 0.47235409 0.37419598 0. nan 0. 0.32268508 0.05312127 0. 0.83874416 0.79217023 0.89975806 0.00192312 0.20492869 0.31166384 0. ] | [0. 0.70588336 0.94249106 0.19298309 0.73275474 0.44094168 nan 0.48341533 0.71859918 0. 0.90854187 0. 0. nan 0. 0.6752697 0. 0. 0.88312382 0.03451747 0.65575793 0.42127597 0. nan 0. 0.39094462 0.05356577 0. 0.95291962 0.86480438 0.95973926 0.00251199 0.29803261 0.40525743 0. ] | 7 | | 0.4458 | 0.6356 | 0.3066 | 0.3759 | 0.8311 | [0. 0.66186021 0.83364406 0.48364478 0.53627121 0.27582606 nan 0.35739504 0.41076225 0. 0.77850446 0. 0. nan 0. 0.50299945 0. 0. 0.70340595 0.01741996 0.40137463 0.32885851 0. nan 0. 0.32114603 0.05439069 0. 0.84655176 0.80081688 0.90314194 0.00292704 0.24599153 0.34524384 0. ] | [0. 0.74699777 0.95226432 0.65030589 0.70566846 0.35272168 nan 0.47019568 0.71372001 0. 0.91011138 0. 0. nan 0. 0.62189092 0. 0. 0.87945472 0.01742109 0.52016264 0.36958738 0. nan 0. 0.3993222 0.05508716 0. 0.928178 0.89821483 0.96116851 0.0033765 0.40579212 0.46633448 0. ] | 8 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.1