Initial commit
Browse files- .gitattributes +2 -0
- README.md +58 -0
- a2c-Swimmer-v3.zip +3 -0
- a2c-Swimmer-v3/_stable_baselines3_version +1 -0
- a2c-Swimmer-v3/data +100 -0
- a2c-Swimmer-v3/policy.optimizer.pth +3 -0
- a2c-Swimmer-v3/policy.pth +3 -0
- a2c-Swimmer-v3/pytorch_variables.pth +3 -0
- a2c-Swimmer-v3/system_info.txt +7 -0
- args.yml +65 -0
- config.yml +9 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
29 |
+
vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Swimmer-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 199.91 +/- 1.32
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Swimmer-v3
|
20 |
+
type: Swimmer-v3
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **Swimmer-v3**
|
24 |
+
This is a trained model of a **A2C** agent playing **Swimmer-v3**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo a2c --env Swimmer-v3 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo a2c --env Swimmer-v3 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo a2c --env Swimmer-v3 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo a2c --env Swimmer-v3 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('gamma', 0.9999),
|
54 |
+
('n_timesteps', 1000000.0),
|
55 |
+
('normalize', True),
|
56 |
+
('policy', 'MlpPolicy'),
|
57 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
58 |
+
```
|
a2c-Swimmer-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c78cb6fa2f5de592dcd93b7fe06dbff512baaef0feb702beee234006de3f3f0
|
3 |
+
size 104464
|
a2c-Swimmer-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
a2c-Swimmer-v3/data
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd5d9b67950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd5d9b679e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd5d9b67a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd5d9b67b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd5d9b67b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd5d9b67c20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd5d9b67cb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd5d9b67d40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd5d9b67dd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd5d9b67e60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd5d9b67ef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fd5d9bb8840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
25 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
26 |
+
"optimizer_kwargs": {
|
27 |
+
"alpha": 0.99,
|
28 |
+
"eps": 1e-05,
|
29 |
+
"weight_decay": 0
|
30 |
+
}
|
31 |
+
},
|
32 |
+
"observation_space": {
|
33 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
34 |
+
":serialized:": "gASVAwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgKiUNAAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5R0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLCIWUaAqJQ0AAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEGgSSwCFlGgUh5RSlChLAUsIhZRoKIlDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSwiFlHViLg==",
|
35 |
+
"dtype": "float64",
|
36 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
37 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
38 |
+
"bounded_below": "[False False False False False False False False]",
|
39 |
+
"bounded_above": "[False False False False False False False False]",
|
40 |
+
"_np_random": null,
|
41 |
+
"_shape": [
|
42 |
+
8
|
43 |
+
]
|
44 |
+
},
|
45 |
+
"action_space": {
|
46 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
47 |
+
":serialized:": "gASVFwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgKiUMIAACAvwAAgL+UdJRijARoaWdolGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgKiUMIAACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMCAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgoiUMCAQGUdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoOIwFc3RhdGWUfZQojANrZXmUaBBoEksAhZRoFIeUUpQoSwFNcAKFlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwKFlHViLg==",
|
48 |
+
"dtype": "float32",
|
49 |
+
"low": "[-1. -1.]",
|
50 |
+
"high": "[1. 1.]",
|
51 |
+
"bounded_below": "[ True True]",
|
52 |
+
"bounded_above": "[ True True]",
|
53 |
+
"_np_random": "RandomState(MT19937)",
|
54 |
+
"_shape": [
|
55 |
+
2
|
56 |
+
]
|
57 |
+
},
|
58 |
+
"n_envs": 1,
|
59 |
+
"num_timesteps": 1000000,
|
60 |
+
"_total_timesteps": 1000000,
|
61 |
+
"_num_timesteps_at_start": 0,
|
62 |
+
"seed": 0,
|
63 |
+
"action_noise": null,
|
64 |
+
"start_time": 1637082257.3700523,
|
65 |
+
"learning_rate": 0.0007,
|
66 |
+
"tensorboard_log": null,
|
67 |
+
"lr_schedule": {
|
68 |
+
":type:": "<class 'function'>",
|
69 |
+
":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
70 |
+
},
|
71 |
+
"_last_obs": null,
|
72 |
+
"_last_episode_starts": {
|
73 |
+
":type:": "<class 'numpy.ndarray'>",
|
74 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="
|
75 |
+
},
|
76 |
+
"_last_original_obs": {
|
77 |
+
":type:": "<class 'numpy.ndarray'>",
|
78 |
+
":serialized:": "gASVygAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNA2LmbtKU1lr+0uLyODLepP1qCLfVDM6q/yM1mVM9wmz8oYQs050CtPzRieyv1dKu/EFrWXHD/hT/6v9yfuiK2P5R0lGIu"
|
79 |
+
},
|
80 |
+
"_episode_num": 0,
|
81 |
+
"use_sde": false,
|
82 |
+
"sde_sample_freq": -1,
|
83 |
+
"_current_progress_remaining": 0.0,
|
84 |
+
"ep_info_buffer": {
|
85 |
+
":type:": "<class 'collections.deque'>",
|
86 |
+
":serialized:": "gASVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYkhOJm5XckCUhpRSlIwBbJRN6AOMAXSUR0Cp8IhOgxrSdX2UKGgGaAloD0MI9dbAVokkcUCUhpRSlGgVTegDaBZHQKn2L71Iy0t1fZQoaAZoCWgPQwj7d33m7PBwQJSGlFKUaBVN6ANoFkdAqfvOMAFPi3V9lChoBmgJaA9DCOEKKNRTNXBAlIaUUpRoFU3oA2gWR0CqAW0Jv5xjdX2UKGgGaAloD0MIRRMoYpHib0CUhpRSlGgVTegDaBZHQKoHDo+Ofd11fZQoaAZoCWgPQwg7ONibGDNwQJSGlFKUaBVN6ANoFkdAqgywoG6f8XV9lChoBmgJaA9DCNaqXRNSO29AlIaUUpRoFU3oA2gWR0CqElIJAt4BdX2UKGgGaAloD0MIe6GA7WCub0CUhpRSlGgVTegDaBZHQKoX6e7L+xZ1fZQoaAZoCWgPQwj7ITZYuHJvQJSGlFKUaBVN6ANoFkdAqh2E4R28qXV9lChoBmgJaA9DCOY/pN9+RnJAlIaUUpRoFU3oA2gWR0CqIx88DB/JdX2UKGgGaAloD0MIofgx5u50cUCUhpRSlGgVTegDaBZHQKoouelKsdV1fZQoaAZoCWgPQwhXz0nv20VwQJSGlFKUaBVN6ANoFkdAqi5TAaef7XV9lChoBmgJaA9DCFmjHqLRVnBAlIaUUpRoFU3oA2gWR0CqM++Y+jdpdX2UKGgGaAloD0MIgNQmTm6ocUCUhpRSlGgVTegDaBZHQKo5iYfGMn91fZQoaAZoCWgPQwiJQzaQLtptQJSGlFKUaBVN6ANoFkdAqj8nMUypJnV9lChoBmgJaA9DCNcYdELodWxAlIaUUpRoFU3oA2gWR0CqRMMIu5BkdX2UKGgGaAloD0MI8GskCcKibECUhpRSlGgVTegDaBZHQKpJzpUPxx11fZQoaAZoCWgPQwhQjCyZY39rQJSGlFKUaBVN6ANoFkdAqk719Dx9X3V9lChoBmgJaA9DCLH9ZIwPe2hAlIaUUpRoFU3oA2gWR0CqVKEnLJS0dX2UKGgGaAloD0MI/psXJ778Z0CUhpRSlGgVTegDaBZHQKpaPyfcvdx1fZQoaAZoCWgPQwjwoxr2+/9pQJSGlFKUaBVN6ANoFkdAql/eV3Ux23V9lChoBmgJaA9DCGlxxjCn7WVAlIaUUpRoFU3oA2gWR0CqZXyOinHedX2UKGgGaAloD0MIdv9YiA5PZkCUhpRSlGgVTegDaBZHQKprHYChew91fZQoaAZoCWgPQwhKCcGq+pNpQJSGlFKUaBVN6ANoFkdAqnC7GYKIBXV9lChoBmgJaA9DCIxqEVFMAGdAlIaUUpRoFU3oA2gWR0CqdleI/JNkdX2UKGgGaAloD0MIkpT0MDSoa0CUhpRSlGgVTegDaBZHQKqIfGd7OVx1fZQoaAZoCWgPQwjiH7b0aDtuQJSGlFKUaBVN6ANoFkdAqo4rHAAQx3V9lChoBmgJaA9DCDxM++b+lW1AlIaUUpRoFU3oA2gWR0Cqk9U8mrsCdX2UKGgGaAloD0MIvJaQD/qSaUCUhpRSlGgVTegDaBZHQKqZcQp4KQd1fZQoaAZoCWgPQwiOkIE8uxhrQJSGlFKUaBVN6ANoFkdAqp8PjMmnfnV9lChoBmgJaA9DCMMRpFLsVG9AlIaUUpRoFU3oA2gWR0CqpKyk9ECvdX2UKGgGaAloD0MIg9pv7cRgakCUhpRSlGgVTegDaBZHQKqqUGRmseZ1fZQoaAZoCWgPQwhoWIy6VqxrQJSGlFKUaBVN6ANoFkdAqq/uKZUkwHV9lChoBmgJaA9DCKUV31D4IGxAlIaUUpRoFU3oA2gWR0CqtYvUKArhdX2UKGgGaAloD0MIbF1qhH75aECUhpRSlGgVTegDaBZHQKq7K2G7Bft1fZQoaAZoCWgPQwjVeyqnPX1sQJSGlFKUaBVN6ANoFkdAqsDKIk7fYXV9lChoBmgJaA9DCFoO9FDbSGZAlIaUUpRoFU3oA2gWR0Cqxmm1hLGrdX2UKGgGaAloD0MIBHKJI49jcECUhpRSlGgVTegDaBZHQKrMBvqkdmx1fZQoaAZoCWgPQwi4dqIkZAdwQJSGlFKUaBVN6ANoFkdAqtGig7HQyHV9lChoBmgJaA9DCO6Yuis7K3BAlIaUUpRoFU3oA2gWR0Cq1oTI/7iydX2UKGgGaAloD0MIxCYycwE1a0CUhpRSlGgVTegDaBZHQKrbQefZmI11fZQoaAZoCWgPQwjZBYNr7rBsQJSGlFKUaBVN6ANoFkdAquDcvoNd7nV9lChoBmgJaA9DCMhhMH+FlGxAlIaUUpRoFU3oA2gWR0Cq5nhDgIhRdX2UKGgGaAloD0MIopbmVgjkakCUhpRSlGgVTegDaBZHQKrsFgR9PUN1fZQoaAZoCWgPQwgJ3/sbNK9pQJSGlFKUaBVN6ANoFkdAqvGwRsdkrnV9lChoBmgJaA9DCMYwJ2iTompAlIaUUpRoFU3oA2gWR0Cq901jAi3YdX2UKGgGaAloD0MI1ZP5R98BbECUhpRSlGgVTegDaBZHQKr86YSg5BF1fZQoaAZoCWgPQwgmpgux+h1rQJSGlFKUaBVN6ANoFkdAqwKFtbcGknV9lChoBmgJaA9DCMuFyr8W9mtAlIaUUpRoFU3oA2gWR0CrCCcmrsBydX2UKGgGaAloD0MI8P0N2iv0aUCUhpRSlGgVTegDaBZHQKsNxGipNsZ1fZQoaAZoCWgPQwiSW5NuS2prQJSGlFKUaBVN6ANoFkdAqyAHSc9W63V9lChoBmgJaA9DCM2RlV+Gd25AlIaUUpRoFU3oA2gWR0CrJbQ0GeMAdX2UKGgGaAloD0MIEEHV6FVpb0CUhpRSlGgVTegDaBZHQKsrYXhwVCZ1fZQoaAZoCWgPQwh6HXHIBiZvQJSGlFKUaBVN6ANoFkdAqzD+BQN1AHV9lChoBmgJaA9DCFvSUQ7mY21AlIaUUpRoFU3oA2gWR0CrNpo0IkZ8dX2UKGgGaAloD0MIUYL+Qo84cECUhpRSlGgVTegDaBZHQKs8NK7I1cd1fZQoaAZoCWgPQwhenWNAdnxyQJSGlFKUaBVN6ANoFkdAq0HRqM3qA3V9lChoBmgJaA9DCMAGRIhrxHFAlIaUUpRoFU3oA2gWR0CrR23Dej20dX2UKGgGaAloD0MIy0dS0sNEa0CUhpRSlGgVTegDaBZHQKtNCac7Qsx1fZQoaAZoCWgPQwhyhuKONwdwQJSGlFKUaBVN6ANoFkdAq1KlLlFMI3V9lChoBmgJaA9DCKLRHcSOA3BAlIaUUpRoFU3oA2gWR0CrWEQuM+/ydX2UKGgGaAloD0MI8KXwoNm3akCUhpRSlGgVTegDaBZHQKtd40kWykd1fZQoaAZoCWgPQwjFckurIThrQJSGlFKUaBVN6ANoFkdAq2MewgTyrnV9lChoBmgJaA9DCHSV7q6ze21AlIaUUpRoFU3oA2gWR0CraCBbOeJ6dX2UKGgGaAloD0MI6rKY2Hyob0CUhpRSlGgVTegDaBZHQKttzZYgaFV1fZQoaAZoCWgPQwhZ3H9kushvQJSGlFKUaBVN6ANoFkdAq3N66reZX3V9lChoBmgJaA9DCN0LzAoFUXBAlIaUUpRoFU3oA2gWR0CreRgH3UQTdX2UKGgGaAloD0MIY7g6ACIIcECUhpRSlGgVTegDaBZHQKt+sN+b3Gp1fZQoaAZoCWgPQwgXg4dpHwFwQJSGlFKUaBVN6ANoFkdAq4RLkIX0oXV9lChoBmgJaA9DCCSdgZFXMXJAlIaUUpRoFU3oA2gWR0CrieeyzHCGdX2UKGgGaAloD0MIa5kMx3MgcECUhpRSlGgVTegDaBZHQKuPgkAxSHd1fZQoaAZoCWgPQwgB2lazTvRuQJSGlFKUaBVN6ANoFkdAq5Uegg5imXV9lChoBmgJaA9DCP9aXrlepm1AlIaUUpRoFU3oA2gWR0CrmrnEETxodX2UKGgGaAloD0MIhqktdVBlcECUhpRSlGgVTegDaBZHQKugVBfrrxB1fZQoaAZoCWgPQwgqVDcXfxJyQJSGlFKUaBVN6ANoFkdAq6XvZCfHxXV9lChoBmgJaA9DCCfBG9Jo4nFAlIaUUpRoFU3oA2gWR0CruEDsdDIBdX2UKGgGaAloD0MIGm7A5wcvcECUhpRSlGgVTegDaBZHQKu92q3Eycl1fZQoaAZoCWgPQwgkDW5ri2tvQJSGlFKUaBVN6ANoFkdAq8NzDVH4GnV9lChoBmgJaA9DCHufqkKDF21AlIaUUpRoFU3oA2gWR0CryRxVp9JCdX2UKGgGaAloD0MIzv5Aua0ccECUhpRSlGgVTegDaBZHQKvOyaF23a11fZQoaAZoCWgPQwiInpRJjZptQJSGlFKUaBVN6ANoFkdAq9R2Ts6aLHV9lChoBmgJaA9DCEdaKm9HOk9AlIaUUpRoFU3oA2gWR0Cr2h+Y2Kl6dX2UKGgGaAloD0MIu5nRjwbhaECUhpRSlGgVTegDaBZHQKvfzg2Ifr91fZQoaAZoCWgPQwh3TN2V3YhtQJSGlFKUaBVN6ANoFkdAq+V6XSjQA3V9lChoBmgJaA9DCMKIfQKo72xAlIaUUpRoFU3oA2gWR0Cr6yP6KtPpdX2UKGgGaAloD0MICOkpcgi3akCUhpRSlGgVTegDaBZHQKvwLX6qKgt1fZQoaAZoCWgPQwjY9Qt2w89qQJSGlFKUaBVN6ANoFkdAq/UDhDPWx3V9lChoBmgJaA9DCMWqQZjbQWpAlIaUUpRoFU3oA2gWR0Cr+q33xnWbdX2UKGgGaAloD0MIWqFI93OFZUCUhpRSlGgVTegDaBZHQKwAWAd4mkZ1fZQoaAZoCWgPQwi1TlyOVzBmQJSGlFKUaBVN6ANoFkdArAYFeWv8qHV9lChoBmgJaA9DCNcv2A1b/GRAlIaUUpRoFU3oA2gWR0CsC7IOpbUxdX2UKGgGaAloD0MIPwCpTZxiZUCUhpRSlGgVTegDaBZHQKwRXHCoCMh1fZQoaAZoCWgPQwgNNJ9zt3dnQJSGlFKUaBVN6ANoFkdArBb/PAwfyXV9lChoBmgJaA9DCA9CQL4Ea2hAlIaUUpRoFU3oA2gWR0CsHK6QV9F4dX2UKGgGaAloD0MI4rGfxdL2ZkCUhpRSlGgVTegDaBZHQKwiXitq59V1fZQoaAZoCWgPQwjZB1kWzEJmQJSGlFKUaBVN6ANoFkdArCgJHZsbenV9lChoBmgJaA9DCOYDAp3JxGZAlIaUUpRoFU3oA2gWR0CsLbYcm0E6dX2UKGgGaAloD0MICcGqennEZkCUhpRSlGgVTegDaBZHQKwzYotL+P11fZQoaAZoCWgPQwhW8UbmkZFnQJSGlFKUaBVN6ANoFkdArDkMpG4I8nV9lChoBmgJaA9DCBGLGHYYKWdAlIaUUpRoFU3oA2gWR0CsPrrJCBwudWUu"
|
87 |
+
},
|
88 |
+
"ep_success_buffer": {
|
89 |
+
":type:": "<class 'collections.deque'>",
|
90 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
91 |
+
},
|
92 |
+
"_n_updates": 200000,
|
93 |
+
"n_steps": 5,
|
94 |
+
"gamma": 0.9999,
|
95 |
+
"gae_lambda": 1.0,
|
96 |
+
"ent_coef": 0.0,
|
97 |
+
"vf_coef": 0.5,
|
98 |
+
"max_grad_norm": 0.5,
|
99 |
+
"normalize_advantage": false
|
100 |
+
}
|
a2c-Swimmer-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c17aabe8bf82761abc87927fa0bc844cf1ff0d030aa31b5d3a5f75e2931245e1
|
3 |
+
size 42366
|
a2c-Swimmer-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b728966ad25d0d09788ddeae2f1f05c7a14129642404e09043e9c49d2534cfca
|
3 |
+
size 43006
|
a2c-Swimmer-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-Swimmer-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
args.yml
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- a2c
|
4 |
+
- - env
|
5 |
+
- Swimmer-v3
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 20
|
10 |
+
- - eval_freq
|
11 |
+
- 25000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- logs
|
18 |
+
- - log_interval
|
19 |
+
- 2000
|
20 |
+
- - n_eval_envs
|
21 |
+
- 5
|
22 |
+
- - n_evaluations
|
23 |
+
- 20
|
24 |
+
- - n_jobs
|
25 |
+
- 1
|
26 |
+
- - n_startup_trials
|
27 |
+
- 10
|
28 |
+
- - n_timesteps
|
29 |
+
- -1
|
30 |
+
- - n_trials
|
31 |
+
- 10
|
32 |
+
- - no_optim_plots
|
33 |
+
- false
|
34 |
+
- - num_threads
|
35 |
+
- 2
|
36 |
+
- - optimization_log_path
|
37 |
+
- null
|
38 |
+
- - optimize_hyperparameters
|
39 |
+
- false
|
40 |
+
- - pruner
|
41 |
+
- median
|
42 |
+
- - sampler
|
43 |
+
- tpe
|
44 |
+
- - save_freq
|
45 |
+
- -1
|
46 |
+
- - save_replay_buffer
|
47 |
+
- false
|
48 |
+
- - seed
|
49 |
+
- 2024785121
|
50 |
+
- - storage
|
51 |
+
- null
|
52 |
+
- - study_name
|
53 |
+
- null
|
54 |
+
- - tensorboard_log
|
55 |
+
- ''
|
56 |
+
- - trained_agent
|
57 |
+
- ''
|
58 |
+
- - truncate_last_trajectory
|
59 |
+
- true
|
60 |
+
- - uuid
|
61 |
+
- false
|
62 |
+
- - vec_env
|
63 |
+
- dummy
|
64 |
+
- - verbose
|
65 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - gamma
|
3 |
+
- 0.9999
|
4 |
+
- - n_timesteps
|
5 |
+
- 1000000.0
|
6 |
+
- - normalize
|
7 |
+
- true
|
8 |
+
- - policy
|
9 |
+
- MlpPolicy
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af9c85b02b7b0dbb49dcc14271204a02c024d3513966d6cc0f0113432790900e
|
3 |
+
size 1544291
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 199.9062278, "std_reward": 1.3222725151590928, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T17:20:25.894750"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6cee6e86095fe3d8768b1b088b70413cc5c55015f3d4e5f9571d68187a49c857
|
3 |
+
size 42456
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e74fbc7219d587d7b928a445cb71044e78883f10b868e4fe68466b412c624336
|
3 |
+
size 4594
|