araffin commited on
Commit
92485ad
·
1 Parent(s): 7bb7eb6

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
29
+ vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Swimmer-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 199.91 +/- 1.32
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: Swimmer-v3
20
+ type: Swimmer-v3
21
+ ---
22
+
23
+ # **A2C** Agent playing **Swimmer-v3**
24
+ This is a trained model of a **A2C** agent playing **Swimmer-v3**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo a2c --env Swimmer-v3 -orga sb3 -f logs/
41
+ python enjoy.py --algo a2c --env Swimmer-v3 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo a2c --env Swimmer-v3 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo a2c --env Swimmer-v3 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('gamma', 0.9999),
54
+ ('n_timesteps', 1000000.0),
55
+ ('normalize', True),
56
+ ('policy', 'MlpPolicy'),
57
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
58
+ ```
a2c-Swimmer-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c78cb6fa2f5de592dcd93b7fe06dbff512baaef0feb702beee234006de3f3f0
3
+ size 104464
a2c-Swimmer-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
a2c-Swimmer-v3/data ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd5d9b67950>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd5d9b679e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd5d9b67a70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd5d9b67b00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd5d9b67b90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd5d9b67c20>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd5d9b67cb0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd5d9b67d40>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd5d9b67dd0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd5d9b67e60>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd5d9b67ef0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fd5d9bb8840>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gASVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
25
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
26
+ "optimizer_kwargs": {
27
+ "alpha": 0.99,
28
+ "eps": 1e-05,
29
+ "weight_decay": 0
30
+ }
31
+ },
32
+ "observation_space": {
33
+ ":type:": "<class 'gym.spaces.box.Box'>",
34
+ ":serialized:": "gASVAwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgKiUNAAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5R0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLCIWUaAqJQ0AAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEGgSSwCFlGgUh5RSlChLAUsIhZRoKIlDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSwiFlHViLg==",
35
+ "dtype": "float64",
36
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
37
+ "high": "[inf inf inf inf inf inf inf inf]",
38
+ "bounded_below": "[False False False False False False False False]",
39
+ "bounded_above": "[False False False False False False False False]",
40
+ "_np_random": null,
41
+ "_shape": [
42
+ 8
43
+ ]
44
+ },
45
+ "action_space": {
46
+ ":type:": "<class 'gym.spaces.box.Box'>",
47
+ ":serialized:": "gASVFwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgKiUMIAACAvwAAgL+UdJRijARoaWdolGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgKiUMIAACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMCAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgoiUMCAQGUdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoOIwFc3RhdGWUfZQojANrZXmUaBBoEksAhZRoFIeUUpQoSwFNcAKFlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwKFlHViLg==",
48
+ "dtype": "float32",
49
+ "low": "[-1. -1.]",
50
+ "high": "[1. 1.]",
51
+ "bounded_below": "[ True True]",
52
+ "bounded_above": "[ True True]",
53
+ "_np_random": "RandomState(MT19937)",
54
+ "_shape": [
55
+ 2
56
+ ]
57
+ },
58
+ "n_envs": 1,
59
+ "num_timesteps": 1000000,
60
+ "_total_timesteps": 1000000,
61
+ "_num_timesteps_at_start": 0,
62
+ "seed": 0,
63
+ "action_noise": null,
64
+ "start_time": 1637082257.3700523,
65
+ "learning_rate": 0.0007,
66
+ "tensorboard_log": null,
67
+ "lr_schedule": {
68
+ ":type:": "<class 'function'>",
69
+ ":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
70
+ },
71
+ "_last_obs": null,
72
+ "_last_episode_starts": {
73
+ ":type:": "<class 'numpy.ndarray'>",
74
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="
75
+ },
76
+ "_last_original_obs": {
77
+ ":type:": "<class 'numpy.ndarray'>",
78
+ ":serialized:": "gASVygAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNA2LmbtKU1lr+0uLyODLepP1qCLfVDM6q/yM1mVM9wmz8oYQs050CtPzRieyv1dKu/EFrWXHD/hT/6v9yfuiK2P5R0lGIu"
79
+ },
80
+ "_episode_num": 0,
81
+ "use_sde": false,
82
+ "sde_sample_freq": -1,
83
+ "_current_progress_remaining": 0.0,
84
+ "ep_info_buffer": {
85
+ ":type:": "<class 'collections.deque'>",
86
+ ":serialized:": "gASVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYkhOJm5XckCUhpRSlIwBbJRN6AOMAXSUR0Cp8IhOgxrSdX2UKGgGaAloD0MI9dbAVokkcUCUhpRSlGgVTegDaBZHQKn2L71Iy0t1fZQoaAZoCWgPQwj7d33m7PBwQJSGlFKUaBVN6ANoFkdAqfvOMAFPi3V9lChoBmgJaA9DCOEKKNRTNXBAlIaUUpRoFU3oA2gWR0CqAW0Jv5xjdX2UKGgGaAloD0MIRRMoYpHib0CUhpRSlGgVTegDaBZHQKoHDo+Ofd11fZQoaAZoCWgPQwg7ONibGDNwQJSGlFKUaBVN6ANoFkdAqgywoG6f8XV9lChoBmgJaA9DCNaqXRNSO29AlIaUUpRoFU3oA2gWR0CqElIJAt4BdX2UKGgGaAloD0MIe6GA7WCub0CUhpRSlGgVTegDaBZHQKoX6e7L+xZ1fZQoaAZoCWgPQwj7ITZYuHJvQJSGlFKUaBVN6ANoFkdAqh2E4R28qXV9lChoBmgJaA9DCOY/pN9+RnJAlIaUUpRoFU3oA2gWR0CqIx88DB/JdX2UKGgGaAloD0MIofgx5u50cUCUhpRSlGgVTegDaBZHQKoouelKsdV1fZQoaAZoCWgPQwhXz0nv20VwQJSGlFKUaBVN6ANoFkdAqi5TAaef7XV9lChoBmgJaA9DCFmjHqLRVnBAlIaUUpRoFU3oA2gWR0CqM++Y+jdpdX2UKGgGaAloD0MIgNQmTm6ocUCUhpRSlGgVTegDaBZHQKo5iYfGMn91fZQoaAZoCWgPQwiJQzaQLtptQJSGlFKUaBVN6ANoFkdAqj8nMUypJnV9lChoBmgJaA9DCNcYdELodWxAlIaUUpRoFU3oA2gWR0CqRMMIu5BkdX2UKGgGaAloD0MI8GskCcKibECUhpRSlGgVTegDaBZHQKpJzpUPxx11fZQoaAZoCWgPQwhQjCyZY39rQJSGlFKUaBVN6ANoFkdAqk719Dx9X3V9lChoBmgJaA9DCLH9ZIwPe2hAlIaUUpRoFU3oA2gWR0CqVKEnLJS0dX2UKGgGaAloD0MI/psXJ778Z0CUhpRSlGgVTegDaBZHQKpaPyfcvdx1fZQoaAZoCWgPQwjwoxr2+/9pQJSGlFKUaBVN6ANoFkdAql/eV3Ux23V9lChoBmgJaA9DCGlxxjCn7WVAlIaUUpRoFU3oA2gWR0CqZXyOinHedX2UKGgGaAloD0MIdv9YiA5PZkCUhpRSlGgVTegDaBZHQKprHYChew91fZQoaAZoCWgPQwhKCcGq+pNpQJSGlFKUaBVN6ANoFkdAqnC7GYKIBXV9lChoBmgJaA9DCIxqEVFMAGdAlIaUUpRoFU3oA2gWR0CqdleI/JNkdX2UKGgGaAloD0MIkpT0MDSoa0CUhpRSlGgVTegDaBZHQKqIfGd7OVx1fZQoaAZoCWgPQwjiH7b0aDtuQJSGlFKUaBVN6ANoFkdAqo4rHAAQx3V9lChoBmgJaA9DCDxM++b+lW1AlIaUUpRoFU3oA2gWR0Cqk9U8mrsCdX2UKGgGaAloD0MIvJaQD/qSaUCUhpRSlGgVTegDaBZHQKqZcQp4KQd1fZQoaAZoCWgPQwiOkIE8uxhrQJSGlFKUaBVN6ANoFkdAqp8PjMmnfnV9lChoBmgJaA9DCMMRpFLsVG9AlIaUUpRoFU3oA2gWR0CqpKyk9ECvdX2UKGgGaAloD0MIg9pv7cRgakCUhpRSlGgVTegDaBZHQKqqUGRmseZ1fZQoaAZoCWgPQwhoWIy6VqxrQJSGlFKUaBVN6ANoFkdAqq/uKZUkwHV9lChoBmgJaA9DCKUV31D4IGxAlIaUUpRoFU3oA2gWR0CqtYvUKArhdX2UKGgGaAloD0MIbF1qhH75aECUhpRSlGgVTegDaBZHQKq7K2G7Bft1fZQoaAZoCWgPQwjVeyqnPX1sQJSGlFKUaBVN6ANoFkdAqsDKIk7fYXV9lChoBmgJaA9DCFoO9FDbSGZAlIaUUpRoFU3oA2gWR0Cqxmm1hLGrdX2UKGgGaAloD0MIBHKJI49jcECUhpRSlGgVTegDaBZHQKrMBvqkdmx1fZQoaAZoCWgPQwi4dqIkZAdwQJSGlFKUaBVN6ANoFkdAqtGig7HQyHV9lChoBmgJaA9DCO6Yuis7K3BAlIaUUpRoFU3oA2gWR0Cq1oTI/7iydX2UKGgGaAloD0MIxCYycwE1a0CUhpRSlGgVTegDaBZHQKrbQefZmI11fZQoaAZoCWgPQwjZBYNr7rBsQJSGlFKUaBVN6ANoFkdAquDcvoNd7nV9lChoBmgJaA9DCMhhMH+FlGxAlIaUUpRoFU3oA2gWR0Cq5nhDgIhRdX2UKGgGaAloD0MIopbmVgjkakCUhpRSlGgVTegDaBZHQKrsFgR9PUN1fZQoaAZoCWgPQwgJ3/sbNK9pQJSGlFKUaBVN6ANoFkdAqvGwRsdkrnV9lChoBmgJaA9DCMYwJ2iTompAlIaUUpRoFU3oA2gWR0Cq901jAi3YdX2UKGgGaAloD0MI1ZP5R98BbECUhpRSlGgVTegDaBZHQKr86YSg5BF1fZQoaAZoCWgPQwgmpgux+h1rQJSGlFKUaBVN6ANoFkdAqwKFtbcGknV9lChoBmgJaA9DCMuFyr8W9mtAlIaUUpRoFU3oA2gWR0CrCCcmrsBydX2UKGgGaAloD0MI8P0N2iv0aUCUhpRSlGgVTegDaBZHQKsNxGipNsZ1fZQoaAZoCWgPQwiSW5NuS2prQJSGlFKUaBVN6ANoFkdAqyAHSc9W63V9lChoBmgJaA9DCM2RlV+Gd25AlIaUUpRoFU3oA2gWR0CrJbQ0GeMAdX2UKGgGaAloD0MIEEHV6FVpb0CUhpRSlGgVTegDaBZHQKsrYXhwVCZ1fZQoaAZoCWgPQwh6HXHIBiZvQJSGlFKUaBVN6ANoFkdAqzD+BQN1AHV9lChoBmgJaA9DCFvSUQ7mY21AlIaUUpRoFU3oA2gWR0CrNpo0IkZ8dX2UKGgGaAloD0MIUYL+Qo84cECUhpRSlGgVTegDaBZHQKs8NK7I1cd1fZQoaAZoCWgPQwhenWNAdnxyQJSGlFKUaBVN6ANoFkdAq0HRqM3qA3V9lChoBmgJaA9DCMAGRIhrxHFAlIaUUpRoFU3oA2gWR0CrR23Dej20dX2UKGgGaAloD0MIy0dS0sNEa0CUhpRSlGgVTegDaBZHQKtNCac7Qsx1fZQoaAZoCWgPQwhyhuKONwdwQJSGlFKUaBVN6ANoFkdAq1KlLlFMI3V9lChoBmgJaA9DCKLRHcSOA3BAlIaUUpRoFU3oA2gWR0CrWEQuM+/ydX2UKGgGaAloD0MI8KXwoNm3akCUhpRSlGgVTegDaBZHQKtd40kWykd1fZQoaAZoCWgPQwjFckurIThrQJSGlFKUaBVN6ANoFkdAq2MewgTyrnV9lChoBmgJaA9DCHSV7q6ze21AlIaUUpRoFU3oA2gWR0CraCBbOeJ6dX2UKGgGaAloD0MI6rKY2Hyob0CUhpRSlGgVTegDaBZHQKttzZYgaFV1fZQoaAZoCWgPQwhZ3H9kushvQJSGlFKUaBVN6ANoFkdAq3N66reZX3V9lChoBmgJaA9DCN0LzAoFUXBAlIaUUpRoFU3oA2gWR0CreRgH3UQTdX2UKGgGaAloD0MIY7g6ACIIcECUhpRSlGgVTegDaBZHQKt+sN+b3Gp1fZQoaAZoCWgPQwgXg4dpHwFwQJSGlFKUaBVN6ANoFkdAq4RLkIX0oXV9lChoBmgJaA9DCCSdgZFXMXJAlIaUUpRoFU3oA2gWR0CrieeyzHCGdX2UKGgGaAloD0MIa5kMx3MgcECUhpRSlGgVTegDaBZHQKuPgkAxSHd1fZQoaAZoCWgPQwgB2lazTvRuQJSGlFKUaBVN6ANoFkdAq5Uegg5imXV9lChoBmgJaA9DCP9aXrlepm1AlIaUUpRoFU3oA2gWR0CrmrnEETxodX2UKGgGaAloD0MIhqktdVBlcECUhpRSlGgVTegDaBZHQKugVBfrrxB1fZQoaAZoCWgPQwgqVDcXfxJyQJSGlFKUaBVN6ANoFkdAq6XvZCfHxXV9lChoBmgJaA9DCCfBG9Jo4nFAlIaUUpRoFU3oA2gWR0CruEDsdDIBdX2UKGgGaAloD0MIGm7A5wcvcECUhpRSlGgVTegDaBZHQKu92q3Eycl1fZQoaAZoCWgPQwgkDW5ri2tvQJSGlFKUaBVN6ANoFkdAq8NzDVH4GnV9lChoBmgJaA9DCHufqkKDF21AlIaUUpRoFU3oA2gWR0CryRxVp9JCdX2UKGgGaAloD0MIzv5Aua0ccECUhpRSlGgVTegDaBZHQKvOyaF23a11fZQoaAZoCWgPQwiInpRJjZptQJSGlFKUaBVN6ANoFkdAq9R2Ts6aLHV9lChoBmgJaA9DCEdaKm9HOk9AlIaUUpRoFU3oA2gWR0Cr2h+Y2Kl6dX2UKGgGaAloD0MIu5nRjwbhaECUhpRSlGgVTegDaBZHQKvfzg2Ifr91fZQoaAZoCWgPQwh3TN2V3YhtQJSGlFKUaBVN6ANoFkdAq+V6XSjQA3V9lChoBmgJaA9DCMKIfQKo72xAlIaUUpRoFU3oA2gWR0Cr6yP6KtPpdX2UKGgGaAloD0MICOkpcgi3akCUhpRSlGgVTegDaBZHQKvwLX6qKgt1fZQoaAZoCWgPQwjY9Qt2w89qQJSGlFKUaBVN6ANoFkdAq/UDhDPWx3V9lChoBmgJaA9DCMWqQZjbQWpAlIaUUpRoFU3oA2gWR0Cr+q33xnWbdX2UKGgGaAloD0MIWqFI93OFZUCUhpRSlGgVTegDaBZHQKwAWAd4mkZ1fZQoaAZoCWgPQwi1TlyOVzBmQJSGlFKUaBVN6ANoFkdArAYFeWv8qHV9lChoBmgJaA9DCNcv2A1b/GRAlIaUUpRoFU3oA2gWR0CsC7IOpbUxdX2UKGgGaAloD0MIPwCpTZxiZUCUhpRSlGgVTegDaBZHQKwRXHCoCMh1fZQoaAZoCWgPQwgNNJ9zt3dnQJSGlFKUaBVN6ANoFkdArBb/PAwfyXV9lChoBmgJaA9DCA9CQL4Ea2hAlIaUUpRoFU3oA2gWR0CsHK6QV9F4dX2UKGgGaAloD0MI4rGfxdL2ZkCUhpRSlGgVTegDaBZHQKwiXitq59V1fZQoaAZoCWgPQwjZB1kWzEJmQJSGlFKUaBVN6ANoFkdArCgJHZsbenV9lChoBmgJaA9DCOYDAp3JxGZAlIaUUpRoFU3oA2gWR0CsLbYcm0E6dX2UKGgGaAloD0MICcGqennEZkCUhpRSlGgVTegDaBZHQKwzYotL+P11fZQoaAZoCWgPQwhW8UbmkZFnQJSGlFKUaBVN6ANoFkdArDkMpG4I8nV9lChoBmgJaA9DCBGLGHYYKWdAlIaUUpRoFU3oA2gWR0CsPrrJCBwudWUu"
87
+ },
88
+ "ep_success_buffer": {
89
+ ":type:": "<class 'collections.deque'>",
90
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
91
+ },
92
+ "_n_updates": 200000,
93
+ "n_steps": 5,
94
+ "gamma": 0.9999,
95
+ "gae_lambda": 1.0,
96
+ "ent_coef": 0.0,
97
+ "vf_coef": 0.5,
98
+ "max_grad_norm": 0.5,
99
+ "normalize_advantage": false
100
+ }
a2c-Swimmer-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c17aabe8bf82761abc87927fa0bc844cf1ff0d030aa31b5d3a5f75e2931245e1
3
+ size 42366
a2c-Swimmer-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b728966ad25d0d09788ddeae2f1f05c7a14129642404e09043e9c49d2534cfca
3
+ size 43006
a2c-Swimmer-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-Swimmer-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
args.yml ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - a2c
4
+ - - env
5
+ - Swimmer-v3
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 20
10
+ - - eval_freq
11
+ - 25000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - logs
18
+ - - log_interval
19
+ - 2000
20
+ - - n_eval_envs
21
+ - 5
22
+ - - n_evaluations
23
+ - 20
24
+ - - n_jobs
25
+ - 1
26
+ - - n_startup_trials
27
+ - 10
28
+ - - n_timesteps
29
+ - -1
30
+ - - n_trials
31
+ - 10
32
+ - - no_optim_plots
33
+ - false
34
+ - - num_threads
35
+ - 2
36
+ - - optimization_log_path
37
+ - null
38
+ - - optimize_hyperparameters
39
+ - false
40
+ - - pruner
41
+ - median
42
+ - - sampler
43
+ - tpe
44
+ - - save_freq
45
+ - -1
46
+ - - save_replay_buffer
47
+ - false
48
+ - - seed
49
+ - 2024785121
50
+ - - storage
51
+ - null
52
+ - - study_name
53
+ - null
54
+ - - tensorboard_log
55
+ - ''
56
+ - - trained_agent
57
+ - ''
58
+ - - truncate_last_trajectory
59
+ - true
60
+ - - uuid
61
+ - false
62
+ - - vec_env
63
+ - dummy
64
+ - - verbose
65
+ - 1
config.yml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - gamma
3
+ - 0.9999
4
+ - - n_timesteps
5
+ - 1000000.0
6
+ - - normalize
7
+ - true
8
+ - - policy
9
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af9c85b02b7b0dbb49dcc14271204a02c024d3513966d6cc0f0113432790900e
3
+ size 1544291
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 199.9062278, "std_reward": 1.3222725151590928, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T17:20:25.894750"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cee6e86095fe3d8768b1b088b70413cc5c55015f3d4e5f9571d68187a49c857
3
+ size 42456
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e74fbc7219d587d7b928a445cb71044e78883f10b868e4fe68466b412c624336
3
+ size 4594