Initial commit
Browse files- .gitattributes +1 -0
- README.md +63 -0
- args.yml +59 -0
- config.yml +19 -0
- env_kwargs.yml +1 -0
- ppo-LunarLanderContinuous-v2.zip +3 -0
- ppo-LunarLanderContinuous-v2/_stable_baselines3_version +1 -0
- ppo-LunarLanderContinuous-v2/data +97 -0
- ppo-LunarLanderContinuous-v2/policy.optimizer.pth +3 -0
- ppo-LunarLanderContinuous-v2/policy.pth +3 -0
- ppo-LunarLanderContinuous-v2/pytorch_variables.pth +3 -0
- ppo-LunarLanderContinuous-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLanderContinuous-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 274.47 +/- 24.37
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLanderContinuous-v2
|
20 |
+
type: LunarLanderContinuous-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLanderContinuous-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLanderContinuous-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo ppo --env LunarLanderContinuous-v2 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo ppo --env LunarLanderContinuous-v2 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo ppo --env LunarLanderContinuous-v2 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo ppo --env LunarLanderContinuous-v2 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('batch_size', 64),
|
54 |
+
('ent_coef', 0.01),
|
55 |
+
('gae_lambda', 0.98),
|
56 |
+
('gamma', 0.999),
|
57 |
+
('n_envs', 16),
|
58 |
+
('n_epochs', 4),
|
59 |
+
('n_steps', 1024),
|
60 |
+
('n_timesteps', 1000000.0),
|
61 |
+
('policy', 'MlpPolicy'),
|
62 |
+
('normalize', False)])
|
63 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - env
|
5 |
+
- LunarLanderContinuous-v2
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 10
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- rl-trained-agents/
|
18 |
+
- - log_interval
|
19 |
+
- -1
|
20 |
+
- - n_evaluations
|
21 |
+
- 20
|
22 |
+
- - n_jobs
|
23 |
+
- 1
|
24 |
+
- - n_startup_trials
|
25 |
+
- 10
|
26 |
+
- - n_timesteps
|
27 |
+
- -1
|
28 |
+
- - n_trials
|
29 |
+
- 10
|
30 |
+
- - num_threads
|
31 |
+
- -1
|
32 |
+
- - optimize_hyperparameters
|
33 |
+
- false
|
34 |
+
- - pruner
|
35 |
+
- median
|
36 |
+
- - sampler
|
37 |
+
- tpe
|
38 |
+
- - save_freq
|
39 |
+
- -1
|
40 |
+
- - save_replay_buffer
|
41 |
+
- false
|
42 |
+
- - seed
|
43 |
+
- 1848416007
|
44 |
+
- - storage
|
45 |
+
- null
|
46 |
+
- - study_name
|
47 |
+
- null
|
48 |
+
- - tensorboard_log
|
49 |
+
- ''
|
50 |
+
- - trained_agent
|
51 |
+
- ''
|
52 |
+
- - truncate_last_trajectory
|
53 |
+
- true
|
54 |
+
- - uuid
|
55 |
+
- true
|
56 |
+
- - vec_env
|
57 |
+
- dummy
|
58 |
+
- - verbose
|
59 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 64
|
4 |
+
- - ent_coef
|
5 |
+
- 0.01
|
6 |
+
- - gae_lambda
|
7 |
+
- 0.98
|
8 |
+
- - gamma
|
9 |
+
- 0.999
|
10 |
+
- - n_envs
|
11 |
+
- 16
|
12 |
+
- - n_epochs
|
13 |
+
- 4
|
14 |
+
- - n_steps
|
15 |
+
- 1024
|
16 |
+
- - n_timesteps
|
17 |
+
- 1000000.0
|
18 |
+
- - policy
|
19 |
+
- MlpPolicy
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-LunarLanderContinuous-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24f1e4768e26c4a4412a9cbf9973768807833ef8c754b47d5889a75ee06ad484
|
3 |
+
size 146811
|
ppo-LunarLanderContinuous-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
ppo-LunarLanderContinuous-v2/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7faf8a418950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faf8a4189e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faf8a418a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faf8a418b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7faf8a418b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7faf8a418c20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faf8a418cb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7faf8a418d40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faf8a418dd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faf8a418e60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7faf8a418ef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7faf8a469840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgKiUMgAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgKiUMgAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UdJRijA1ib3VuZGVkX2JlbG93lGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMIAAAAAAAAAACUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgoiUMIAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLCIWUdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
28 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
29 |
+
"bounded_below": "[False False False False False False False False]",
|
30 |
+
"bounded_above": "[False False False False False False False False]",
|
31 |
+
"_np_random": null,
|
32 |
+
"_shape": [
|
33 |
+
8
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gASVFwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgKiUMIAACAvwAAgL+UdJRijARoaWdolGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgKiUMIAACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMCAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgoiUMCAQGUdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoOIwFc3RhdGWUfZQojANrZXmUaBBoEksAhZRoFIeUUpQoSwFNcAKFlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwKFlHViLg==",
|
39 |
+
"dtype": "float32",
|
40 |
+
"low": "[-1. -1.]",
|
41 |
+
"high": "[1. 1.]",
|
42 |
+
"bounded_below": "[ True True]",
|
43 |
+
"bounded_above": "[ True True]",
|
44 |
+
"_np_random": "RandomState(MT19937)",
|
45 |
+
"_shape": [
|
46 |
+
2
|
47 |
+
]
|
48 |
+
},
|
49 |
+
"n_envs": 16,
|
50 |
+
"num_timesteps": 1015808,
|
51 |
+
"_total_timesteps": 1000000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": 0,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1614710447.0373354,
|
56 |
+
"learning_rate": 0.0003,
|
57 |
+
"tensorboard_log": null,
|
58 |
+
"lr_schedule": {
|
59 |
+
":type:": "<class 'function'>",
|
60 |
+
":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
61 |
+
},
|
62 |
+
"_last_obs": null,
|
63 |
+
"_last_episode_starts": null,
|
64 |
+
"_last_original_obs": null,
|
65 |
+
"_episode_num": 0,
|
66 |
+
"use_sde": false,
|
67 |
+
"sde_sample_freq": -1,
|
68 |
+
"_current_progress_remaining": -0.015808000000000044,
|
69 |
+
"ep_info_buffer": {
|
70 |
+
":type:": "<class 'collections.deque'>",
|
71 |
+
":serialized:": "gASVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISx+6oD63Y0CUhpRSlIwBbJRN6AOMAXSUR0Chhu/1xsEadX2UKGgGaAloD0MIsMbZdIRvZECUhpRSlGgVTegDaBZHQKGIQ86FM7F1fZQoaAZoCWgPQwgiVRSvstRcQJSGlFKUaBVN6ANoFkdAoZYdvVEux3V9lChoBmgJaA9DCEA08+SamFFAlIaUUpRoFUvXaBZHQKGYJhoduHh1fZQoaAZoCWgPQwgG9S1zuoJkQJSGlFKUaBVN6ANoFkdAoZxcRtgrpnV9lChoBmgJaA9DCHO7l/vkeVhAlIaUUpRoFU3oA2gWR0ChnVDbah6CdX2UKGgGaAloD0MI5bfoZCniYUCUhpRSlGgVTegDaBZHQKGloJ2MbWF1fZQoaAZoCWgPQwgb2ZWWETZkQJSGlFKUaBVN6ANoFkdAobGQQtjCpHV9lChoBmgJaA9DCH46HjPQx2VAlIaUUpRoFU3oA2gWR0Chsk9y1eBydX2UKGgGaAloD0MIkGltGtuUYkCUhpRSlGgVTegDaBZHQKG0OMGX5WR1fZQoaAZoCWgPQwiB64oZ4WxdQJSGlFKUaBVN6ANoFkdAob5F61LJ0XV9lChoBmgJaA9DCEbrqGoC/WBAlIaUUpRoFU3oA2gWR0Chv/UfPompdX2UKGgGaAloD0MIaeBHNWxzYECUhpRSlGgVTegDaBZHQKHAezHCGet1fZQoaAZoCWgPQwhfRUYHJGthQJSGlFKUaBVN6ANoFkdAocIuaYu01XV9lChoBmgJaA9DCKhTHt0Iel5AlIaUUpRoFU3oA2gWR0ChxxoPCl7/dX2UKGgGaAloD0MI/dtlv+6zZUCUhpRSlGgVTegDaBZHQKHHhSQYDT11fZQoaAZoCWgPQwjl8bT8wNBdQJSGlFKUaBVN6ANoFkdAocjBDPWxyHV9lChoBmgJaA9DCM8SZARUrGJAlIaUUpRoFU3oA2gWR0Ch09OtW+49dX2UKGgGaAloD0MI7Es2Hmy4WkCUhpRSlGgVTegDaBZHQKHbBovi97F1fZQoaAZoCWgPQwjj3vyGCfViQJSGlFKUaBVN6ANoFkdAod1t3W4EwHV9lChoBmgJaA9DCDFBDd/C5V1AlIaUUpRoFU3oA2gWR0Ch4gCQ9zOpdX2UKGgGaAloD0MI/DbEeM3HYUCUhpRSlGgVTegDaBZHQKHjAyE+Pil1fZQoaAZoCWgPQwiY9s391UlhQJSGlFKUaBVN6ANoFkdAofMLXpW3jXV9lChoBmgJaA9DCJ/HKM+842FAlIaUUpRoFU3oA2gWR0Ch/lmorFwUdX2UKGgGaAloD0MIafzCK0kyYUCUhpRSlGgVTegDaBZHQKH/Bid8Rcx1fZQoaAZoCWgPQwiInpRJDQphQJSGlFKUaBVN6ANoFkdAogCtIPK+z3V9lChoBmgJaA9DCPzHQnQI9GJAlIaUUpRoFU3oA2gWR0CiAovAO8TSdX2UKGgGaAloD0MIoaAUrdxlYECUhpRSlGgVTegDaBZHQKID89C/oJR1fZQoaAZoCWgPQwhTeNDsOhljQJSGlFKUaBVN6ANoFkdAogRqLuQZGnV9lChoBmgJaA9DCBLaci7FZWFAlIaUUpRoFU3oA2gWR0CiBc/BnBcidX2UKGgGaAloD0MI+ptQiIBZTUCUhpRSlGgVS7FoFkdAoghcTakAP3V9lChoBmgJaA9DCF3Cobd4oGRAlIaUUpRoFU3oA2gWR0CiCcybH6uXdX2UKGgGaAloD0MItMh2vh8fY0CUhpRSlGgVTegDaBZHQKIKHsMRYih1fZQoaAZoCWgPQwjn/1VHDmdjQJSGlFKUaBVN6ANoFkdAogsQjD8+A3V9lChoBmgJaA9DCDTY1HnUW2BAlIaUUpRoFU3oA2gWR0CiHXcgQpWndX2UKGgGaAloD0MIWRMLfMXCYkCUhpRSlGgVTegDaBZHQKIjSdAgPmR1fZQoaAZoCWgPQwjYfcfw2KNkQJSGlFKUaBVN6ANoFkdAoiWLVe8f3nV9lChoBmgJaA9DCCZSms1joWJAlIaUUpRoFU3oA2gWR0CiKg+Hi3ocdX2UKGgGaAloD0MIjiJrDSVeY0CUhpRSlGgVTegDaBZHQKIrGQe3hGZ1fZQoaAZoCWgPQwiFWz6SkktdQJSGlFKUaBVN6ANoFkdAojP/nU2DQXV9lChoBmgJaA9DCGJodXIG3mRAlIaUUpRoFU3oA2gWR0CiSQse4kNXdX2UKGgGaAloD0MIzojS3uD0X0CUhpRSlGgVTegDaBZHQKJJ0OG0u151fZQoaAZoCWgPQwhdFhObjy9jQJSGlFKUaBVN6ANoFkdAok3xcZ9/jXV9lChoBmgJaA9DCLk16bbEuWJAlIaUUpRoFU3oA2gWR0CiT6zyz5XVdX2UKGgGaAloD0MILNUFvMx9ZECUhpRSlGgVTegDaBZHQKJQMy0rsjV1fZQoaAZoCWgPQwi7KlCLwXFkQJSGlFKUaBVN6ANoFkdAolHqsU7CBXV9lChoBmgJaA9DCIzbaABvQWZAlIaUUpRoFU3oA2gWR0CiVQR0uDjBdX2UKGgGaAloD0MIW0QUk7dJZUCUhpRSlGgVTegDaBZHQKJWr3XZoPF1fZQoaAZoCWgPQwgeFmpN80NfQJSGlFKUaBVN6ANoFkdAolcNTBInSnV9lChoBmgJaA9DCGwkCcKVyGNAlIaUUpRoFU3oA2gWR0CiWCxVQyh0dX2UKGgGaAloD0MIFyzVBbwnX0CUhpRSlGgVTegDaBZHQKJaJEpiI+J1fZQoaAZoCWgPQwhFLjiDvxNmQJSGlFKUaBVN6ANoFkdAomk38jzI3nV9lChoBmgJaA9DCKA3FakwIlxAlIaUUpRoFU3oA2gWR0Cia4ZOafBfdX2UKGgGaAloD0MI/8u1aIEmY0CUhpRSlGgVTegDaBZHQKJ360iQkop1fZQoaAZoCWgPQwjNqzqrBXBkQJSGlFKUaBVN6ANoFkdAonjtaY/mknV9lChoBmgJaA9DCIXOa+ySaGZAlIaUUpRoFU3oA2gWR0CigiqwY+B6dX2UKGgGaAloD0MII/d0dUcqZUCUhpRSlGgVTegDaBZHQKKOnTb349J1fZQoaAZoCWgPQwjytPzA1QhhQJSGlFKUaBVN6ANoFkdAoo9V7hNucnV9lChoBmgJaA9DCCMT8Gukc2NAlIaUUpRoFU3oA2gWR0CikzCaRZEEdX2UKGgGaAloD0MItf8B1qr0YECUhpRSlGgVTegDaBZHQKKU26ySmqJ1fZQoaAZoCWgPQwhIaww6oRZhQJSGlFKUaBVN6ANoFkdAopVfr8iwCHV9lChoBmgJaA9DCOcdp+jItGVAlIaUUpRoFU3oA2gWR0Cilv1fu1F6dX2UKGgGaAloD0MISpnU0IZYYECUhpRSlGgVTegDaBZHQKKh3Yq5LAZ1fZQoaAZoCWgPQwga+bziqQhgQJSGlFKUaBVN6ANoFkdAoqN0QqZtvXV9lChoBmgJaA9DCLRZ9bnaMmVAlIaUUpRoFU3oA2gWR0Cio8reANG3dX2UKGgGaAloD0MI542TwrzHZUCUhpRSlGgVTegDaBZHQKKk1KlHjId1fZQoaAZoCWgPQwiiREsez3pkQJSGlFKUaBVN6ANoFkdAoqbLgTAWSHV9lChoBmgJaA9DCAlQU8tWAGdAlIaUUpRoFU3oA2gWR0CittNrKvFFdX2UKGgGaAloD0MIutqK/WXJY0CUhpRSlGgVTegDaBZHQKK5MtkFwDN1fZQoaAZoCWgPQwgeGavN/7tkQJSGlFKUaBVN6ANoFkdAor2t6sySFHV9lChoBmgJaA9DCEji5elcR19AlIaUUpRoFU3oA2gWR0Civq0HyEtedX2UKGgGaAloD0MIz7pGywG2ZkCUhpRSlGgVTegDaBZHQKLHWtZmqYJ1fZQoaAZoCWgPQwiWk1D6QgtmQJSGlFKUaBVN6ANoFkdAotsuDcuannV9lChoBmgJaA9DCDdtxmkIfWBAlIaUUpRoFU3oA2gWR0Ci2+pJ5E+gdX2UKGgGaAloD0MI++b+6nEZZECUhpRSlGgVTegDaBZHQKLfyZrpJPJ1fZQoaAZoCWgPQwj/HydMmOBjQJSGlFKUaBVN6ANoFkdAouFtP3ztkXV9lChoBmgJaA9DCCTUDKmipF5AlIaUUpRoFU3oA2gWR0Ci4e5cLSeAdX2UKGgGaAloD0MIyEEJM+0VYECUhpRSlGgVTegDaBZHQKLjf3C9AX51fZQoaAZoCWgPQwisi9toALpeQJSGlFKUaBVN6ANoFkdAouZXh4t6HHV9lChoBmgJaA9DCGuDE9GvoWFAlIaUUpRoFU3oA2gWR0Ci5+RQ79ycdX2UKGgGaAloD0MIS5Ln+j6yX0CUhpRSlGgVTegDaBZHQKLoPMuez2R1fZQoaAZoCWgPQwhdh2pKsuFeQJSGlFKUaBVN6ANoFkdAoulE2WIGhXV9lChoBmgJaA9DCNMXQs57A2NAlIaUUpRoFU3oA2gWR0Ci6xp/XoTxdX2UKGgGaAloD0MIQNmUK7w+Y0CUhpRSlGgVTegDaBZHQKMBzhhH9WJ1fZQoaAZoCWgPQwjNctnoHFZhQJSGlFKUaBVN6ANoFkdAowPqm0mdAnV9lChoBmgJaA9DCHUEcLN4DWVAlIaUUpRoFU3oA2gWR0CjCB/vWpZPdX2UKGgGaAloD0MIlEp4Qq8+YkCUhpRSlGgVTegDaBZHQKMJGHARChN1fZQoaAZoCWgPQwgpBkg0gdldQJSGlFKUaBVN6ANoFkdAoxFBbUwztXV9lChoBmgJaA9DCK38MhgjvExAlIaUUpRoFUvOaBZHQKMTNuwX6691fZQoaAZoCWgPQwgXg4dpXzRiQJSGlFKUaBVN6ANoFkdAoxxnmJWNm3V9lChoBmgJaA9DCN16TQ+KtmdAlIaUUpRoFU3oA2gWR0CjHR5hjOLSdX2UKGgGaAloD0MIZRcMrrnpXECUhpRSlGgVTegDaBZHQKMozLTQVsV1fZQoaAZoCWgPQwi5pkBm5wtiQJSGlFKUaBVN6ANoFkdAoyqMaMrEtXV9lChoBmgJaA9DCLa6nBKQaWVAlIaUUpRoFU3oA2gWR0CjKxFijL0SdX2UKGgGaAloD0MI/3bZr7uQYECUhpRSlGgVTegDaBZHQKMsxbor4Fl1fZQoaAZoCWgPQwhUH0jeOfJlQJSGlFKUaBVN6ANoFkdAoy/EgyM1j3V9lChoBmgJaA9DCBcplIWvNWNAlIaUUpRoFU3oA2gWR0CjMV0ZWJaadX2UKGgGaAloD0MIY7Mj1fdcZkCUhpRSlGgVTegDaBZHQKMxtjKgZjx1fZQoaAZoCWgPQwgU6BN5EgVmQJSGlFKUaBVN6ANoFkdAozLFa6jFh3V9lChoBmgJaA9DCFLUmXvIS2BAlIaUUpRoFU3oA2gWR0CjNK9RzijtdWUu"
|
72 |
+
},
|
73 |
+
"ep_success_buffer": {
|
74 |
+
":type:": "<class 'collections.deque'>",
|
75 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
76 |
+
},
|
77 |
+
"_n_updates": 248,
|
78 |
+
"n_steps": 1024,
|
79 |
+
"gamma": 0.999,
|
80 |
+
"gae_lambda": 0.98,
|
81 |
+
"ent_coef": 0.01,
|
82 |
+
"vf_coef": 0.5,
|
83 |
+
"max_grad_norm": 0.5,
|
84 |
+
"batch_size": 64,
|
85 |
+
"n_epochs": 4,
|
86 |
+
"clip_range": {
|
87 |
+
":type:": "<class 'function'>",
|
88 |
+
":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
89 |
+
},
|
90 |
+
"clip_range_vf": null,
|
91 |
+
"normalize_advantage": true,
|
92 |
+
"target_kl": null,
|
93 |
+
"_last_dones": {
|
94 |
+
":type:": "<class 'numpy.ndarray'>",
|
95 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
96 |
+
}
|
97 |
+
}
|
ppo-LunarLanderContinuous-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f62823cd631b2b830b6e5628fe9db26eec70fd24268ed6239d9e3b8dab6158b1
|
3 |
+
size 84375
|
ppo-LunarLanderContinuous-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0501a872d8de909bed3bcccf63ab913568402a2c053322e904650924d8a3597
|
3 |
+
size 43006
|
ppo-LunarLanderContinuous-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLanderContinuous-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f29dab502fd203b587906c489b337b4e17c82c6c49d6fbde63f05aa72c94c1f7
|
3 |
+
size 154680
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 274.4680444, "std_reward": 24.369639462086855, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T14:08:49.653923"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a581e4ff6c4e0c17fb97003ddbd045cf2bce4c5102997407aabc341283964479
|
3 |
+
size 85529
|