araffin commited on
Commit
0f4ef68
1 Parent(s): 4db82cf

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Swimmer-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TD3
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 359.05 +/- 0.97
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: Swimmer-v3
20
+ type: Swimmer-v3
21
+ ---
22
+
23
+ # **TD3** Agent playing **Swimmer-v3**
24
+ This is a trained model of a **TD3** agent playing **Swimmer-v3**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo td3 --env Swimmer-v3 -orga sb3 -f logs/
41
+ python enjoy.py --algo td3 --env Swimmer-v3 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo td3 --env Swimmer-v3 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo td3 --env Swimmer-v3 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('gamma', 0.9999),
54
+ ('gradient_steps', 1),
55
+ ('learning_starts', 10000),
56
+ ('n_timesteps', 1000000.0),
57
+ ('noise_std', 0.1),
58
+ ('noise_type', 'normal'),
59
+ ('policy', 'MlpPolicy'),
60
+ ('train_freq', 1),
61
+ ('normalize', False)])
62
+ ```
args.yml ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - td3
4
+ - - env
5
+ - Swimmer-v3
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 5
10
+ - - eval_freq
11
+ - 25000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - gradient_steps: 1
16
+ train_freq: 1
17
+ - - log_folder
18
+ - logs
19
+ - - log_interval
20
+ - 10
21
+ - - n_eval_envs
22
+ - 1
23
+ - - n_evaluations
24
+ - 20
25
+ - - n_jobs
26
+ - 1
27
+ - - n_startup_trials
28
+ - 10
29
+ - - n_timesteps
30
+ - -1
31
+ - - n_trials
32
+ - 10
33
+ - - no_optim_plots
34
+ - false
35
+ - - num_threads
36
+ - 2
37
+ - - optimization_log_path
38
+ - null
39
+ - - optimize_hyperparameters
40
+ - false
41
+ - - pruner
42
+ - median
43
+ - - sampler
44
+ - tpe
45
+ - - save_freq
46
+ - -1
47
+ - - save_replay_buffer
48
+ - false
49
+ - - seed
50
+ - 3865637836
51
+ - - storage
52
+ - null
53
+ - - study_name
54
+ - null
55
+ - - tensorboard_log
56
+ - ''
57
+ - - trained_agent
58
+ - ''
59
+ - - truncate_last_trajectory
60
+ - true
61
+ - - uuid
62
+ - false
63
+ - - vec_env
64
+ - dummy
65
+ - - verbose
66
+ - 1
config.yml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - gamma
3
+ - 0.9999
4
+ - - gradient_steps
5
+ - 1
6
+ - - learning_starts
7
+ - 10000
8
+ - - n_timesteps
9
+ - 1000000.0
10
+ - - noise_std
11
+ - 0.1
12
+ - - noise_type
13
+ - normal
14
+ - - policy
15
+ - MlpPolicy
16
+ - - train_freq
17
+ - 1
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:240db3010b0e08dfb8b48f57636ef2c7366bdf193525ac013871f638d4958733
3
+ size 1453596
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 359.05045820000004, "std_reward": 0.9679679755904925, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T15:04:54.070075"}
td3-Swimmer-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4026ad3d4cf00bd951341af8d38952f69ebc555995dd21d5de449235ebf45213
3
+ size 6034053
td3-Swimmer-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
td3-Swimmer-v3/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6799e87beb67261e8170a4350f76c543426fd7353aee96ed246f1a2996977fcb
3
+ size 999361
td3-Swimmer-v3/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abd49d181b78225e4a800193a23ad79c451b557ad7c6813df13cf32708a58c80
3
+ size 2006429
td3-Swimmer-v3/data ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TD3Policy.__init__ at 0x7f07d0f73170>",
8
+ "_build": "<function TD3Policy._build at 0x7f07d0f73200>",
9
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7f07d0f73290>",
10
+ "make_actor": "<function TD3Policy.make_actor at 0x7f07d0f73320>",
11
+ "make_critic": "<function TD3Policy.make_critic at 0x7f07d0f733b0>",
12
+ "forward": "<function TD3Policy.forward at 0x7f07d0f73440>",
13
+ "_predict": "<function TD3Policy._predict at 0x7f07d0f734d0>",
14
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x7f07d0f73560>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc_data object at 0x7f07d0f711e0>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {},
20
+ "observation_space": {
21
+ ":type:": "<class 'gym.spaces.box.Box'>",
22
+ ":serialized:": "gASVAwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgKiUNAAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5R0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLCIWUaAqJQ0AAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEGgSSwCFlGgUh5RSlChLAUsIhZRoKIlDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSwiFlHViLg==",
23
+ "dtype": "float64",
24
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
25
+ "high": "[inf inf inf inf inf inf inf inf]",
26
+ "bounded_below": "[False False False False False False False False]",
27
+ "bounded_above": "[False False False False False False False False]",
28
+ "_np_random": null,
29
+ "_shape": [
30
+ 8
31
+ ]
32
+ },
33
+ "action_space": {
34
+ ":type:": "<class 'gym.spaces.box.Box'>",
35
+ ":serialized:": "gASVFwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgKiUMIAACAvwAAgL+UdJRijARoaWdolGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgKiUMIAACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMCAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgoiUMCAQGUdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoOIwFc3RhdGWUfZQojANrZXmUaBBoEksAhZRoFIeUUpQoSwFNcAKFlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwKFlHViLg==",
36
+ "dtype": "float32",
37
+ "low": "[-1. -1.]",
38
+ "high": "[1. 1.]",
39
+ "bounded_below": "[ True True]",
40
+ "bounded_above": "[ True True]",
41
+ "_np_random": "RandomState(MT19937)",
42
+ "_shape": [
43
+ 2
44
+ ]
45
+ },
46
+ "n_envs": 1,
47
+ "num_timesteps": 1000000,
48
+ "_total_timesteps": 1000000,
49
+ "_num_timesteps_at_start": 0,
50
+ "seed": 0,
51
+ "action_noise": {
52
+ ":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
53
+ ":serialized:": "gASVFAEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5SMBW51bXB5lIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsChZRoCYwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQxAAAAAAAAAAAAAAAAAAAAAAlHSUYowGX3NpZ21hlGgIaAtLAIWUaA2HlFKUKEsBSwKFlGgViUMQmpmZmZmZuT+amZmZmZm5P5R0lGJ1Yi4=",
54
+ "_mu": "[0. 0.]",
55
+ "_sigma": "[0.1 0.1]"
56
+ },
57
+ "start_time": 1636994798.0187693,
58
+ "learning_rate": 0.001,
59
+ "tensorboard_log": null,
60
+ "lr_schedule": {
61
+ ":type:": "<class 'function'>",
62
+ ":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
63
+ },
64
+ "_last_obs": null,
65
+ "_last_episode_starts": {
66
+ ":type:": "<class 'numpy.ndarray'>",
67
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="
68
+ },
69
+ "_last_original_obs": {
70
+ ":type:": "<class 'numpy.ndarray'>",
71
+ ":serialized:": "gASVygAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNAF6Er49oU4r9ObOsPopjtP8jHr69Nm76/pSSyUwvz8z9RG4SVxJj4P3xDPlJ3TQPAc6ZWjdZa/T+A1gj9o1gLQJR0lGIu"
72
+ },
73
+ "_episode_num": 1000,
74
+ "use_sde": false,
75
+ "sde_sample_freq": -1,
76
+ "_current_progress_remaining": 0.0,
77
+ "ep_info_buffer": {
78
+ ":type:": "<class 'collections.deque'>",
79
+ ":serialized:": "gASVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhzO/mgOcdUCUhpRSlIwBbJRN6AOMAXSUR0C0R856po9LdX2UKGgGaAloD0MIelVntUB6dUCUhpRSlGgVTegDaBZHQLRNIB0IToN1fZQoaAZoCWgPQwjNeFvptWF1QJSGlFKUaBVN6ANoFkdAtFJphBqsVHV9lChoBmgJaA9DCOp3YWs2xHVAlIaUUpRoFU3oA2gWR0C0V62qDK5kdX2UKGgGaAloD0MIQYF38unSdUCUhpRSlGgVTegDaBZHQLRc8cvduYR1fZQoaAZoCWgPQwhTJcre0ql1QJSGlFKUaBVN6ANoFkdAtGIxDIBBA3V9lChoBmgJaA9DCNYfYRgws3VAlIaUUpRoFU3oA2gWR0C0Z3UQkHD8dX2UKGgGaAloD0MIAWxAhDivdUCUhpRSlGgVTegDaBZHQLRst1Oj7AN1fZQoaAZoCWgPQwiSskXSbst1QJSGlFKUaBVN6ANoFkdAtHH23w1BMXV9lChoBmgJaA9DCFuxv+ze13VAlIaUUpRoFU3oA2gWR0C0dzjYAbQ1dX2UKGgGaAloD0MIhPHTuDfUdUCUhpRSlGgVTegDaBZHQLR8cbEgntx1fZQoaAZoCWgPQwiMogc+Rsl1QJSGlFKUaBVN6ANoFkdAtIG1c6eXiXV9lChoBmgJaA9DCKD+s+YHpHVAlIaUUpRoFU3oA2gWR0C0hvVzuF6BdX2UKGgGaAloD0MIE36pn3eadUCUhpRSlGgVTegDaBZHQLSMS3dbgTB1fZQoaAZoCWgPQwhQwkzb//R1QJSGlFKUaBVN6ANoFkdAtJGKbQTmGXV9lChoBmgJaA9DCL1vfO3Z7nVAlIaUUpRoFU3oA2gWR0C0ltcQqZtvdX2UKGgGaAloD0MIgQpHkIqwdUCUhpRSlGgVTegDaBZHQLScLmNzbN91fZQoaAZoCWgPQwjmWN5VD6h1QJSGlFKUaBVN6ANoFkdAtKF8EhaC+XV9lChoBmgJaA9DCFZl3xWBc3VAlIaUUpRoFU3oA2gWR0C0pswPd2xIdX2UKGgGaAloD0MIxxLWxhhOdUCUhpRSlGgVTegDaBZHQLSsESF49ox1fZQoaAZoCWgPQwgTfxR1pjN1QJSGlFKUaBVN6ANoFkdAtLFi+Yc/+3V9lChoBmgJaA9DCPKVQEps1HVAlIaUUpRoFU3oA2gWR0C0tq8f/3nIdX2UKGgGaAloD0MIfZQRF4BddUCUhpRSlGgVTegDaBZHQLS7+DlHSWt1fZQoaAZoCWgPQwg91/fhoIh1QJSGlFKUaBVN6ANoFkdAtME/93r2QHV9lChoBmgJaA9DCG/UCtO3t3VAlIaUUpRoFU3oA2gWR0C0xoesxO+JdX2UKGgGaAloD0MIufqxSb6cdUCUhpRSlGgVTegDaBZHQLTOuc8DB/J1fZQoaAZoCWgPQwhFLGLY4cB1QJSGlFKUaBVN6ANoFkdAtNQD6j323HV9lChoBmgJaA9DCIzYJ4Dip3VAlIaUUpRoFU3oA2gWR0C02U7depn6dX2UKGgGaAloD0MI4XoUrgfMdUCUhpRSlGgVTegDaBZHQLTelSWZ7Xx1fZQoaAZoCWgPQwiaCBue3g52QJSGlFKUaBVN6ANoFkdAtOPnyGzrvHV9lChoBmgJaA9DCM6o+Sp5s3VAlIaUUpRoFU3oA2gWR0C06TIwudwvdX2UKGgGaAloD0MI6fNRRpy0dUCUhpRSlGgVTegDaBZHQLTueyksSTR1fZQoaAZoCWgPQwiVfOwukNV1QJSGlFKUaBVN6ANoFkdAtPPStQsPKHV9lChoBmgJaA9DCKorn+W53XVAlIaUUpRoFU3oA2gWR0C0+R3kLhJidX2UKGgGaAloD0MIzT/6Jk3kdUCUhpRSlGgVTegDaBZHQLT+Z9Wp6yB1fZQoaAZoCWgPQwjJxoMt9uB1QJSGlFKUaBVN6ANoFkdAtQO85yU9p3V9lChoBmgJaA9DCIf+CS4W13VAlIaUUpRoFU3oA2gWR0C1CQa5TZQIdX2UKGgGaAloD0MIOPdXj3vudUCUhpRSlGgVTegDaBZHQLUOWsq8UVV1fZQoaAZoCWgPQwgK9fQR+AJ2QJSGlFKUaBVN6ANoFkdAtROnhm5DqnV9lChoBmgJaA9DCJih8UTQN3ZAlIaUUpRoFU3oA2gWR0C1GPPMr3CbdX2UKGgGaAloD0MIVaAWg8c5dkCUhpRSlGgVTegDaBZHQLUeQG7Bfrt1fZQoaAZoCWgPQwhCzZAqisp1QJSGlFKUaBVN6ANoFkdAtSN+8274BXV9lChoBmgJaA9DCPm/IyrUsXVAlIaUUpRoFU3oA2gWR0C1KMPRRdhRdX2UKGgGaAloD0MIm+RH/Eo2dkCUhpRSlGgVTegDaBZHQLUuAO2AoXt1fZQoaAZoCWgPQwiqDrkZbqR1QJSGlFKUaBVN6ANoFkdAtTNIBFNL13V9lChoBmgJaA9DCFvptdnYxXVAlIaUUpRoFU3oA2gWR0C1OIjmwJPZdX2UKGgGaAloD0MIKA01CsngdUCUhpRSlGgVTegDaBZHQLU9xv2GqPx1fZQoaAZoCWgPQwjvVwG+2xx2QJSGlFKUaBVN6ANoFkdAtUL/V6NVBHV9lChoBmgJaA9DCCb9vRRe3nVAlIaUUpRoFU3oA2gWR0C1SHMaGYa6dX2UKGgGaAloD0MIjGfQ0D80dkCUhpRSlGgVTegDaBZHQLVN8qnm7rd1fZQoaAZoCWgPQwhUw35PLM91QJSGlFKUaBVN6ANoFkdAtVZ0AyVObnV9lChoBmgJaA9DCNv9KsA38HVAlIaUUpRoFU3oA2gWR0C1XAGFBY3edX2UKGgGaAloD0MIh/nyAuz8dUCUhpRSlGgVTegDaBZHQLVhjQ3gk1N1fZQoaAZoCWgPQwgqcoi4ufp1QJSGlFKUaBVN6ANoFkdAtWcZa1TisHV9lChoBmgJaA9DCPPK9bbZ03VAlIaUUpRoFU3oA2gWR0C1bKEFnqVydX2UKGgGaAloD0MIJ8Eb0ugEdkCUhpRSlGgVTegDaBZHQLVyEevZAY51fZQoaAZoCWgPQwi+LViqyyt2QJSGlFKUaBVN6ANoFkdAtXdpgTh5xHV9lChoBmgJaA9DCFq9w+3QIHZAlIaUUpRoFU3oA2gWR0C1fMjZUT+OdX2UKGgGaAloD0MIglg2cwj1dUCUhpRSlGgVTegDaBZHQLWCH50r9VF1fZQoaAZoCWgPQwibHhSUoqB1QJSGlFKUaBVN6ANoFkdAtYd8kRjBmHV9lChoBmgJaA9DCLaDEfsEt3VAlIaUUpRoFU3oA2gWR0C1jNBKUVzqdX2UKGgGaAloD0MIvJaQDzredUCUhpRSlGgVTegDaBZHQLWSGn3L3bp1fZQoaAZoCWgPQwgyOiAJ+891QJSGlFKUaBVN6ANoFkdAtZdgzHjp93V9lChoBmgJaA9DCDl80omE93VAlIaUUpRoFU3oA2gWR0C1nJ4hhYvGdX2UKGgGaAloD0MIhSLdz+kGdkCUhpRSlGgVTegDaBZHQLWh7XqZ+hJ1fZQoaAZoCWgPQwivCz84H+91QJSGlFKUaBVN6ANoFkdAtaczvkRzzXV9lChoBmgJaA9DCAmH3uKh/3VAlIaUUpRoFU3oA2gWR0C1rHhClabGdX2UKGgGaAloD0MI325JDlgBdkCUhpRSlGgVTegDaBZHQLWxrBreqJd1fZQoaAZoCWgPQwgzbf/KSqd1QJSGlFKUaBVN6ANoFkdAtbbwU34sVnV9lChoBmgJaA9DCNi3k4iw8HVAlIaUUpRoFU3oA2gWR0C1vDhtgrpadX2UKGgGaAloD0MIiGNd3IbpdUCUhpRSlGgVTegDaBZHQLXBerDIikh1fZQoaAZoCWgPQwjDZ+vg4EJ2QJSGlFKUaBVN6ANoFkdAtcbR4VymynV9lChoBmgJaA9DCG02VmIem3VAlIaUUpRoFU3oA2gWR0C1zEbv5P/JdX2UKGgGaAloD0MIebDFbp/GdUCUhpRSlGgVTegDaBZHQLXRwQTEit91fZQoaAZoCWgPQwj0GVBvxvt1QJSGlFKUaBVN6ANoFkdAtdcvpu/DcnV9lChoBmgJaA9DCL8NMV4zrXVAlIaUUpRoFU3oA2gWR0C1319+gDigdX2UKGgGaAloD0MIHcpQFRPvdUCUhpRSlGgVTegDaBZHQLXktbs4T9N1fZQoaAZoCWgPQwgUkzfADEl2QJSGlFKUaBVN6ANoFkdAteoMFpwjuHV9lChoBmgJaA9DCEFmZ9H77XVAlIaUUpRoFU3oA2gWR0C171ueWfK7dX2UKGgGaAloD0MIJqjhW1hBdkCUhpRSlGgVTegDaBZHQLX0os2vStx1fZQoaAZoCWgPQwj3dHXH4hF2QJSGlFKUaBVN6ANoFkdAtfn0HUtqYnV9lChoBmgJaA9DCDM2dLM/5XVAlIaUUpRoFU3oA2gWR0C1/z2cjJMhdX2UKGgGaAloD0MImzdOCjPFdUCUhpRSlGgVTegDaBZHQLYEiHiFTNt1fZQoaAZoCWgPQwghHomXZ+F1QJSGlFKUaBVN6ANoFkdAtgnMvEjxC3V9lChoBmgJaA9DCO1+FeC77nVAlIaUUpRoFU3oA2gWR0C2Dzl8CxNZdX2UKGgGaAloD0MIEarU7AH/dUCUhpRSlGgVTegDaBZHQLYUoTdLxqh1fZQoaAZoCWgPQwjUghd9hQx2QJSGlFKUaBVN6ANoFkdAthoIHpr1unV9lChoBmgJaA9DCMpqup5oyHVAlIaUUpRoFU3oA2gWR0C2H0eP3i71dX2UKGgGaAloD0MIUtZvJqbUdUCUhpRSlGgVTegDaBZHQLYkhvR7Z391fZQoaAZoCWgPQwhEF9S3TMt1QJSGlFKUaBVN6ANoFkdAtinJZX+2mnV9lChoBmgJaA9DCAby7PIt0XVAlIaUUpRoFU3oA2gWR0C2Lx2r4nF6dX2UKGgGaAloD0MIdNGQ8egFdkCUhpRSlGgVTegDaBZHQLY0bZtvXK91fZQoaAZoCWgPQwi5bHTOD9l1QJSGlFKUaBVN6ANoFkdAtjm8bgjyF3V9lChoBmgJaA9DCNpTck7sAnZAlIaUUpRoFU3oA2gWR0C2Pw7Q9ic5dX2UKGgGaAloD0MIJ4dPOhHCdUCUhpRSlGgVTegDaBZHQLZEZopQUHp1fZQoaAZoCWgPQwjbUDHOX8F1QJSGlFKUaBVN6ANoFkdAtkm5ssQNC3V9lChoBmgJaA9DCH8xW7Kq0nVAlIaUUpRoFU3oA2gWR0C2Tv770nPWdX2UKGgGaAloD0MIJemayTesdUCUhpRSlGgVTegDaBZHQLZUSeVLSNR1fZQoaAZoCWgPQwh7vfvjfSx2QJSGlFKUaBVN6ANoFkdAtlmRxCIDYHV9lChoBmgJaA9DCDSGOUFb43VAlIaUUpRoFU3oA2gWR0C2XtEBnzxxdWUu"
80
+ },
81
+ "ep_success_buffer": {
82
+ ":type:": "<class 'collections.deque'>",
83
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
84
+ },
85
+ "_n_updates": 990000,
86
+ "buffer_size": 1,
87
+ "batch_size": 100,
88
+ "learning_starts": 10000,
89
+ "tau": 0.005,
90
+ "gamma": 0.9999,
91
+ "gradient_steps": 1,
92
+ "optimize_memory_usage": false,
93
+ "replay_buffer_class": {
94
+ ":type:": "<class 'abc.ABCMeta'>",
95
+ ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
96
+ "__module__": "stable_baselines3.common.buffers",
97
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
98
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f07d13f0b90>",
99
+ "add": "<function ReplayBuffer.add at 0x7f07d13f0c20>",
100
+ "sample": "<function ReplayBuffer.sample at 0x7f07d0f577a0>",
101
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f07d0f57830>",
102
+ "__abstractmethods__": "frozenset()",
103
+ "_abc_impl": "<_abc_data object at 0x7f07d14475d0>"
104
+ },
105
+ "replay_buffer_kwargs": {},
106
+ "train_freq": {
107
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
108
+ ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
109
+ },
110
+ "use_sde_at_warmup": false,
111
+ "policy_delay": 2,
112
+ "target_noise_clip": 0.5,
113
+ "target_policy_noise": 0.2,
114
+ "remove_time_limit_termination": false
115
+ }
td3-Swimmer-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e355f37ecb8b272239e87cdbf6cf2ccab833ed6b92743ce1a015bc1ffecf0534
3
+ size 3008121
td3-Swimmer-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
td3-Swimmer-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8029b46d78884a265b54f0e92bdffbc47c5438f1956a379cb01c1fa66a0970f2
3
+ size 32997