Initial commit
Browse files- .gitattributes +1 -0
- README.md +58 -0
- args.yml +65 -0
- config.yml +9 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- tqc-HalfCheetah-v3.zip +3 -0
- tqc-HalfCheetah-v3/_stable_baselines3_version +1 -0
- tqc-HalfCheetah-v3/actor.optimizer.pth +3 -0
- tqc-HalfCheetah-v3/critic.optimizer.pth +3 -0
- tqc-HalfCheetah-v3/data +114 -0
- tqc-HalfCheetah-v3/ent_coef_optimizer.pth +3 -0
- tqc-HalfCheetah-v3/policy.pth +3 -0
- tqc-HalfCheetah-v3/pytorch_variables.pth +3 -0
- tqc-HalfCheetah-v3/system_info.txt +7 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- HalfCheetah-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TQC
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 12102.81 +/- 119.24
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: HalfCheetah-v3
|
20 |
+
type: HalfCheetah-v3
|
21 |
+
---
|
22 |
+
|
23 |
+
# **TQC** Agent playing **HalfCheetah-v3**
|
24 |
+
This is a trained model of a **TQC** agent playing **HalfCheetah-v3**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo tqc --env HalfCheetah-v3 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo tqc --env HalfCheetah-v3 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo tqc --env HalfCheetah-v3 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo tqc --env HalfCheetah-v3 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('learning_starts', 10000),
|
54 |
+
('n_timesteps', 1000000.0),
|
55 |
+
('policy', 'MlpPolicy'),
|
56 |
+
('use_sde', False),
|
57 |
+
('normalize', False)])
|
58 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- tqc
|
4 |
+
- - env
|
5 |
+
- HalfCheetah-v3
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 20
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- use_sde: false
|
16 |
+
- - log_folder
|
17 |
+
- logs/
|
18 |
+
- - log_interval
|
19 |
+
- 10
|
20 |
+
- - n_eval_envs
|
21 |
+
- 5
|
22 |
+
- - n_evaluations
|
23 |
+
- 20
|
24 |
+
- - n_jobs
|
25 |
+
- 1
|
26 |
+
- - n_startup_trials
|
27 |
+
- 10
|
28 |
+
- - n_timesteps
|
29 |
+
- 1000000
|
30 |
+
- - n_trials
|
31 |
+
- 10
|
32 |
+
- - no_optim_plots
|
33 |
+
- false
|
34 |
+
- - num_threads
|
35 |
+
- 2
|
36 |
+
- - optimization_log_path
|
37 |
+
- null
|
38 |
+
- - optimize_hyperparameters
|
39 |
+
- false
|
40 |
+
- - pruner
|
41 |
+
- median
|
42 |
+
- - sampler
|
43 |
+
- tpe
|
44 |
+
- - save_freq
|
45 |
+
- -1
|
46 |
+
- - save_replay_buffer
|
47 |
+
- false
|
48 |
+
- - seed
|
49 |
+
- 594371
|
50 |
+
- - storage
|
51 |
+
- null
|
52 |
+
- - study_name
|
53 |
+
- null
|
54 |
+
- - tensorboard_log
|
55 |
+
- ''
|
56 |
+
- - trained_agent
|
57 |
+
- ''
|
58 |
+
- - truncate_last_trajectory
|
59 |
+
- true
|
60 |
+
- - uuid
|
61 |
+
- true
|
62 |
+
- - vec_env
|
63 |
+
- dummy
|
64 |
+
- - verbose
|
65 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - learning_starts
|
3 |
+
- 10000
|
4 |
+
- - n_timesteps
|
5 |
+
- 1000000.0
|
6 |
+
- - policy
|
7 |
+
- MlpPolicy
|
8 |
+
- - use_sde
|
9 |
+
- false
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d9102feaeaa5895fd3fbcfb559d4b90566735b07e516452a02c1027257e5465
|
3 |
+
size 1514050
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 12102.8088043, "std_reward": 119.242195405367, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T20:52:12.837269"}
|
tqc-HalfCheetah-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a238366fab4d9bbdb492ac4f954eb485c700e20c80c2be50909786b2838178e
|
3 |
+
size 3433755
|
tqc-HalfCheetah-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
tqc-HalfCheetah-v3/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31306739d84f4634563dc450e17d40c8d3d4e74494342a6a38c5a46721d26594
|
3 |
+
size 592181
|
tqc-HalfCheetah-v3/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:935e7f3b908c75dc841f80907a567e524e6a9e9b235e0bce813a0498db3c7137
|
3 |
+
size 1260189
|
tqc-HalfCheetah-v3/data
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "sb3_contrib.tqc.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function TQCPolicy.__init__ at 0x7fac9ac33710>",
|
8 |
+
"_build": "<function TQCPolicy._build at 0x7fac9ac337a0>",
|
9 |
+
"_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7fac9ac33830>",
|
10 |
+
"reset_noise": "<function TQCPolicy.reset_noise at 0x7fac9ac338c0>",
|
11 |
+
"make_actor": "<function TQCPolicy.make_actor at 0x7fac9ac33950>",
|
12 |
+
"make_critic": "<function TQCPolicy.make_critic at 0x7fac9ac339e0>",
|
13 |
+
"forward": "<function TQCPolicy.forward at 0x7fac9ac33a70>",
|
14 |
+
"_predict": "<function TQCPolicy._predict at 0x7fac9ac33b00>",
|
15 |
+
"set_training_mode": "<function TQCPolicy.set_training_mode at 0x7fac9ac33b90>",
|
16 |
+
"__abstractmethods__": "frozenset()",
|
17 |
+
"_abc_impl": "<_abc_data object at 0x7fac9ac93690>"
|
18 |
+
},
|
19 |
+
"verbose": 1,
|
20 |
+
"policy_kwargs": {
|
21 |
+
"use_sde": false
|
22 |
+
},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVpQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxGFlGgKiUOIAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5R0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLEYWUaAqJQ4gAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsRhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEQAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEGgSSwCFlGgUh5RSlChLAUsRhZRoKIlDEQAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSxGFlHViLg==",
|
26 |
+
"dtype": "float64",
|
27 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf]",
|
28 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
|
29 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False]",
|
30 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False]",
|
31 |
+
"_np_random": null,
|
32 |
+
"_shape": [
|
33 |
+
17
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gASVPwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwaFlGgKiUMYAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsGhZRoColDGAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLBoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwYBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwaFlGgoiUMGAQEBAQEBlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDiMBXN0YXRllH2UKIwDa2V5lGgQaBJLAIWUaBSHlFKUKEsBTXAChZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGKJQsAJAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUdJRijANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YowGX3NoYXBllEsGhZR1Yi4=",
|
39 |
+
"dtype": "float32",
|
40 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
41 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
42 |
+
"bounded_below": "[ True True True True True True]",
|
43 |
+
"bounded_above": "[ True True True True True True]",
|
44 |
+
"_np_random": "RandomState(MT19937)",
|
45 |
+
"_shape": [
|
46 |
+
6
|
47 |
+
]
|
48 |
+
},
|
49 |
+
"n_envs": 1,
|
50 |
+
"num_timesteps": 1000000,
|
51 |
+
"_total_timesteps": 1000000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": 0,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1635497694.5468128,
|
56 |
+
"learning_rate": 0.0003,
|
57 |
+
"tensorboard_log": null,
|
58 |
+
"lr_schedule": {
|
59 |
+
":type:": "<class 'function'>",
|
60 |
+
":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
61 |
+
},
|
62 |
+
"_last_obs": null,
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gASVEgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLEYaUaAOMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOIZAs7EVwJr79vgr/8AG2zv7jruIX4KaA/B4H8Ilbz1T8wUT8Uh1W7P2PUmcvNyeM/Zp3K/DIP5D9ullpHRq7bPz8zj95gJCxAeTeQ4SHf+D/z46wuwEPRv90VbP9o6jBAQnPZfgmuH0BiBCWLhB4oQAcQbcpezgzApnauC5X4JMAkv00HdKMHQJR0lGIu"
|
70 |
+
},
|
71 |
+
"_episode_num": 1000,
|
72 |
+
"use_sde": false,
|
73 |
+
"sde_sample_freq": -1,
|
74 |
+
"_current_progress_remaining": 0.0,
|
75 |
+
"ep_info_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gASVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDHVY4eqaxUCUhpRSlIwBbJRN6AOMAXSUR0C/L2wAZKnOdX2UKGgGaAloD0MILLzLRRIhxkCUhpRSlGgVTegDaBZHQL833KHfuTl1fZQoaAZoCWgPQwjrVWR0+LXFQJSGlFKUaBVN6ANoFkdAv0BeRFI/aHV9lChoBmgJaA9DCPSMfcnMj8VAlIaUUpRoFU3oA2gWR0C/SORs67uldX2UKGgGaAloD0MIyFwZVE9HxUCUhpRSlGgVTegDaBZHQL9RUQNkOI91fZQoaAZoCWgPQwj2su20mfHFQJSGlFKUaBVN6ANoFkdAv1nDJwKjSHV9lChoBmgJaA9DCFXcuMXessVAlIaUUpRoFU3oA2gWR0C/YiruIAOsdX2UKGgGaAloD0MIYytoWp5UxkCUhpRSlGgVTegDaBZHQL9qt9AooeB1fZQoaAZoCWgPQwgkDtlApGnFQJSGlFKUaBVN6ANoFkdAv3M8svqTr3V9lChoBmgJaA9DCOGVJM99YsVAlIaUUpRoFU3oA2gWR0C/e7fwqiGndX2UKGgGaAloD0MIsrlqnoUJxkCUhpRSlGgVTegDaBZHQL+IdGM4tHx1fZQoaAZoCWgPQwjjUL8L++vFQJSGlFKUaBVN6ANoFkdAv5ELf3vhInV9lChoBmgJaA9DCPD6zFmVIsZAlIaUUpRoFU3oA2gWR0C/mZMd1dPddX2UKGgGaAloD0MIQkC+hP5ExkCUhpRSlGgVTegDaBZHQL+iCphnanJ1fZQoaAZoCWgPQwiHF0SkVoHFQJSGlFKUaBVN6ANoFkdAv6qTHIZIhHV9lChoBmgJaA9DCOqVsgy3ucVAlIaUUpRoFU3oA2gWR0C/syGNaQmvdX2UKGgGaAloD0MIiNhg4TBJxkCUhpRSlGgVTegDaBZHQL+7hjMFEAp1fZQoaAZoCWgPQwiFQ2/xsNx/QJSGlFKUaBVN6ANoFkdAv8P5u5z5oHV9lChoBmgJaA9DCKLw2TrKJcZAlIaUUpRoFU3oA2gWR0C/zJ1C5VfedX2UKGgGaAloD0MIB2ADIogTxkCUhpRSlGgVTegDaBZHQL/VJZSeiBZ1fZQoaAZoCWgPQwgTgH9KlUXGQJSGlFKUaBVN6ANoFkdAv+G8osqaw3V9lChoBmgJaA9DCC+GcqIvBsZAlIaUUpRoFU3oA2gWR0C/6iKwdKdydX2UKGgGaAloD0MIS5NS0DWcxUCUhpRSlGgVTegDaBZHQL/ykUONHYp1fZQoaAZoCWgPQwgMsI9OB1jGQJSGlFKUaBVN6ANoFkdAv/sF4/u9e3V9lChoBmgJaA9DCATLETLcscVAlIaUUpRoFU3oA2gWR0DAAcYwh4dIdX2UKGgGaAloD0MImbfqOoykxUCUhpRSlGgVTegDaBZHQMAGFB42S+x1fZQoaAZoCWgPQwh9A5MbQxTGQJSGlFKUaBVN6ANoFkdAwApNnxJ/X3V9lChoBmgJaA9DCPhtiPEaz8ZAlIaUUpRoFU3oA2gWR0DADn+DWbw0dX2UKGgGaAloD0MIaFvNOkUmxkCUhpRSlGgVTegDaBZHQMASsX5WRzR1fZQoaAZoCWgPQwikObLyQwfGQJSGlFKUaBVN6ANoFkdAwBbrGus90XV9lChoBmgJaA9DCBFzSdVuR8ZAlIaUUpRoFU3oA2gWR0DAHUWIZZSvdX2UKGgGaAloD0MIQ1VMpYd4xUCUhpRSlGgVTegDaBZHQMAhlhQemvZ1fZQoaAZoCWgPQwjaAdcVtZHGQJSGlFKUaBVN6ANoFkdAwCXnfCQ9zXV9lChoBmgJaA9DCHhgAOGvGsZAlIaUUpRoFU3oA2gWR0DAKjGzKLbYdX2UKGgGaAloD0MITwKbc5AexkCUhpRSlGgVTegDaBZHQMAua/qgRK91fZQoaAZoCWgPQwjUuaKUjuHFQJSGlFKUaBVN6ANoFkdAwDK5Roh6jXV9lChoBmgJaA9DCM9qgT3QZsZAlIaUUpRoFU3oA2gWR0DANwADxLCfdX2UKGgGaAloD0MIBd1e0sQrxkCUhpRSlGgVTegDaBZHQMA7NYs/Y8N1fZQoaAZoCWgPQwi2hHzQqevFQJSGlFKUaBVN6ANoFkdAwD9xgKnei3V9lChoBmgJaA9DCAu45/n5zcVAlIaUUpRoFU3oA2gWR0DAQ6croW56dX2UKGgGaAloD0MId2aC4SrcxUCUhpRSlGgVTegDaBZHQMBJ+ny/bj91fZQoaAZoCWgPQwg+0AoMP4fFQJSGlFKUaBVN6ANoFkdAwE4rwG4ZuXV9lChoBmgJaA9DCJtZSwFdOsZAlIaUUpRoFU3oA2gWR0DAUmA8wHqvdX2UKGgGaAloD0MIWmPQCYcOxkCUhpRSlGgVTegDaBZHQMBWm/p2U0N1fZQoaAZoCWgPQwjEI/Hy3pjGQJSGlFKUaBVN6ANoFkdAwFrc1MM7VHV9lChoBmgJaA9DCDepaKyD8MVAlIaUUpRoFU3oA2gWR0DAXxyrPt2LdX2UKGgGaAloD0MImPxP/oZaxkCUhpRSlGgVTegDaBZHQMBjUfdRBNV1fZQoaAZoCWgPQwjrrYGt5iXGQJSGlFKUaBVN6ANoFkdAwGekhStNjHV9lChoBmgJaA9DCBe5p6tLXMZAlIaUUpRoFU3oA2gWR0DAa9m+7Dl6dX2UKGgGaAloD0MIfv/mxSdNxkCUhpRSlGgVTegDaBZHQMBwDC8e0Xx1fZQoaAZoCWgPQwgc8PlhkNTFQJSGlFKUaBVN6ANoFkdAwHZi/wiJO3V9lChoBmgJaA9DCJtwr8wXPsZAlIaUUpRoFU3oA2gWR0DAep81ZTybdX2UKGgGaAloD0MIq+ek95PNxUCUhpRSlGgVTegDaBZHQMB+03QD3dt1fZQoaAZoCWgPQwj5LqUu7+7FQJSGlFKUaBVN6ANoFkdAwIMVGe+VT3V9lChoBmgJaA9DCEG62LRIfcZAlIaUUpRoFU3oA2gWR0DAh1XrpqyodX2UKGgGaAloD0MIvqQxWhvixUCUhpRSlGgVTegDaBZHQMCLlkvkBCF1fZQoaAZoCWgPQwgQPpRoY+HFQJSGlFKUaBVN6ANoFkdAwI/H+3pfQnV9lChoBmgJaA9DCDP9EvHwysVAlIaUUpRoFU3oA2gWR0DAk/5L/S6UdX2UKGgGaAloD0MIz0nvG9fFxkCUhpRSlGgVTegDaBZHQMCYQdm6Gxl1fZQoaAZoCWgPQwgtsp3vbZLGQJSGlFKUaBVN6ANoFkdAwJx56w+t83V9lChoBmgJaA9DCHfbheZ6dMVAlIaUUpRoFU3oA2gWR0DAor7fLs8gdX2UKGgGaAloD0MIEp87wbofxkCUhpRSlGgVTegDaBZHQMCm/pDu0C11fZQoaAZoCWgPQwhZUYNpUInFQJSGlFKUaBVN6ANoFkdAwKtKWTot+XV9lChoBmgJaA9DCIgtPZpq8MVAlIaUUpRoFU3oA2gWR0DAr4kbWEsbdX2UKGgGaAloD0MIEcMOY+aOxkCUhpRSlGgVTegDaBZHQMCzwFgtvn91fZQoaAZoCWgPQwh15h4SUmjGQJSGlFKUaBVN6ANoFkdAwLf3k5p8GHV9lChoBmgJaA9DCDhKXp1H+8VAlIaUUpRoFU3oA2gWR0DAvEIAS39adX2UKGgGaAloD0MIaD9SRIL6xUCUhpRSlGgVTegDaBZHQMDAeWN3np11fZQoaAZoCWgPQwg+CWzO5xzGQJSGlFKUaBVN6ANoFkdAwMSrdPci4nV9lChoBmgJaA9DCAWKWMSkSMZAlIaUUpRoFU3oA2gWR0DAyP5DgIhRdX2UKGgGaAloD0MIZaVJKSoHxkCUhpRSlGgVTegDaBZHQMDPVIuGsWB1fZQoaAZoCWgPQwhIowInh4/FQJSGlFKUaBVN6ANoFkdAwNOS8wHqvHV9lChoBmgJaA9DCIS8HkxcpcZAlIaUUpRoFU3oA2gWR0DA18qRbKRudX2UKGgGaAloD0MIr+lBQd9pxkCUhpRSlGgVTegDaBZHQMDcCjlHSWt1fZQoaAZoCWgPQwipwMk2EszFQJSGlFKUaBVN6ANoFkdAwOBFps41g3V9lChoBmgJaA9DCEWcTrJFZ8ZAlIaUUpRoFU3oA2gWR0DA5HnHJcPfdX2UKGgGaAloD0MInNuEezXlxUCUhpRSlGgVTegDaBZHQMDowNdzGPx1fZQoaAZoCWgPQwjEQq1pwLDGQJSGlFKUaBVN6ANoFkdAwOz/v5xionV9lChoBmgJaA9DCHx9rUsH2cZAlIaUUpRoFU3oA2gWR0DA8UD3mFJydX2UKGgGaAloD0MI+kSeJFdPx0CUhpRSlGgVTegDaBZHQMD1gDzI3it1fZQoaAZoCWgPQwhYU1kU5PnFQJSGlFKUaBVN6ANoFkdAwPvVfhuO0nV9lChoBmgJaA9DCDqQ9dTMa8ZAlIaUUpRoFU3oA2gWR0DBABWLYPGydX2UKGgGaAloD0MI4PPDCIOgxkCUhpRSlGgVTegDaBZHQMEER0bT+eh1fZQoaAZoCWgPQwgKLev+ZYbGQJSGlFKUaBVN6ANoFkdAwQiDrJKaonV9lChoBmgJaA9DCGb1DrdjCcZAlIaUUpRoFU3oA2gWR0DBDMOjO9nLdX2UKGgGaAloD0MImQ6dnt8VxkCUhpRSlGgVTegDaBZHQMEQ+p9JBgN1fZQoaAZoCWgPQwhxcVRudkvGQJSGlFKUaBVN6ANoFkdAwRU6dPLxJHV9lChoBmgJaA9DCIqT+x3ip8ZAlIaUUpRoFU3oA2gWR0DBGX5SUC7sdX2UKGgGaAloD0MI9WT+0S2gxkCUhpRSlGgVTegDaBZHQMEdv7pV0cR1fZQoaAZoCWgPQwgVWABTnErGQJSGlFKUaBVN6ANoFkdAwSH9B7/n4nV9lChoBmgJaA9DCENwXMYbpsZAlIaUUpRoFU3oA2gWR0DBKEMWTHKfdX2UKGgGaAloD0MIAaQ2ccDtxUCUhpRSlGgVTegDaBZHQMEsg3WnTAp1fZQoaAZoCWgPQwgS2JyD2YfGQJSGlFKUaBVN6ANoFkdAwTC0QbMot3V9lChoBmgJaA9DCA2MvKyhN6hAlIaUUpRoFU3oA2gWR0DBNO2xfOUudX2UKGgGaAloD0MIP8Vx4OHixkCUhpRSlGgVTegDaBZHQME5K8rRSgp1fZQoaAZoCWgPQwhwmGiQ3KHGQJSGlFKUaBVN6ANoFkdAwT1uy5Zr6HV9lChoBmgJaA9DCCECDqGKFMZAlIaUUpRoFU3oA2gWR0DBQbGTs6aLdX2UKGgGaAloD0MI0NGqliS0xkCUhpRSlGgVTegDaBZHQMFF6yZ0CBB1fZQoaAZoCWgPQwgrpPykTOHFQJSGlFKUaBVN6ANoFkdAwUo+wW3z+XV9lChoBmgJaA9DCMstrYbkZcZAlIaUUpRoFU3oA2gWR0DBTn1ZFG5MdWUu"
|
78 |
+
},
|
79 |
+
"ep_success_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
+
},
|
83 |
+
"_n_updates": 990000,
|
84 |
+
"buffer_size": 1,
|
85 |
+
"batch_size": 256,
|
86 |
+
"learning_starts": 10000,
|
87 |
+
"tau": 0.005,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gradient_steps": 1,
|
90 |
+
"optimize_memory_usage": false,
|
91 |
+
"replay_buffer_class": {
|
92 |
+
":type:": "<class 'abc.ABCMeta'>",
|
93 |
+
":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
94 |
+
"__module__": "stable_baselines3.common.buffers",
|
95 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
96 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7fac9b40db90>",
|
97 |
+
"add": "<function ReplayBuffer.add at 0x7fac9b40dc20>",
|
98 |
+
"sample": "<function ReplayBuffer.sample at 0x7fac9af747a0>",
|
99 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fac9af74830>",
|
100 |
+
"__abstractmethods__": "frozenset()",
|
101 |
+
"_abc_impl": "<_abc_data object at 0x7fac9b4645d0>"
|
102 |
+
},
|
103 |
+
"replay_buffer_kwargs": {},
|
104 |
+
"train_freq": {
|
105 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
106 |
+
":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
107 |
+
},
|
108 |
+
"use_sde_at_warmup": false,
|
109 |
+
"target_entropy": -6.0,
|
110 |
+
"ent_coef": "auto",
|
111 |
+
"target_update_interval": 1,
|
112 |
+
"top_quantiles_to_drop_per_net": 2,
|
113 |
+
"remove_time_limit_termination": false
|
114 |
+
}
|
tqc-HalfCheetah-v3/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:083e1224cecd18a880ea285addc21918ec224643fcb5ebe740439b3ea8fb90b9
|
3 |
+
size 1255
|
tqc-HalfCheetah-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b202d52bad095925c6feb69315029ba47186e494be70c4fef7dcac1b67324905
|
3 |
+
size 1558533
|
tqc-HalfCheetah-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a3aed4507ec6cb2c8eb9baf5adfa783c98a85463f2c956568beb5ba9e63ae06
|
3 |
+
size 747
|
tqc-HalfCheetah-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:419dbe1d9bf56fbcb51ebd59fb9e5635277f5aeb89bb28c6d614ceb9effe1cc9
|
3 |
+
size 63869
|