Initial commit
Browse files- .gitattributes +1 -0
- README.md +59 -0
- args.yml +65 -0
- config.yml +11 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- tqc-Swimmer-v3.zip +3 -0
- tqc-Swimmer-v3/_stable_baselines3_version +1 -0
- tqc-Swimmer-v3/actor.optimizer.pth +3 -0
- tqc-Swimmer-v3/critic.optimizer.pth +3 -0
- tqc-Swimmer-v3/data +114 -0
- tqc-Swimmer-v3/ent_coef_optimizer.pth +3 -0
- tqc-Swimmer-v3/policy.pth +3 -0
- tqc-Swimmer-v3/pytorch_variables.pth +3 -0
- tqc-Swimmer-v3/system_info.txt +7 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Swimmer-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TQC
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 339.95 +/- 0.80
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Swimmer-v3
|
20 |
+
type: Swimmer-v3
|
21 |
+
---
|
22 |
+
|
23 |
+
# **TQC** Agent playing **Swimmer-v3**
|
24 |
+
This is a trained model of a **TQC** agent playing **Swimmer-v3**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo tqc --env Swimmer-v3 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo tqc --env Swimmer-v3 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo tqc --env Swimmer-v3 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo tqc --env Swimmer-v3 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('gamma', 0.9999),
|
54 |
+
('learning_starts', 10000),
|
55 |
+
('n_timesteps', 1000000.0),
|
56 |
+
('policy', 'MlpPolicy'),
|
57 |
+
('use_sde', False),
|
58 |
+
('normalize', False)])
|
59 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- tqc
|
4 |
+
- - env
|
5 |
+
- Swimmer-v3
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 20
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- use_sde: false
|
16 |
+
- - log_folder
|
17 |
+
- logs/
|
18 |
+
- - log_interval
|
19 |
+
- 10
|
20 |
+
- - n_eval_envs
|
21 |
+
- 5
|
22 |
+
- - n_evaluations
|
23 |
+
- 20
|
24 |
+
- - n_jobs
|
25 |
+
- 1
|
26 |
+
- - n_startup_trials
|
27 |
+
- 10
|
28 |
+
- - n_timesteps
|
29 |
+
- 1000000
|
30 |
+
- - n_trials
|
31 |
+
- 10
|
32 |
+
- - no_optim_plots
|
33 |
+
- false
|
34 |
+
- - num_threads
|
35 |
+
- 2
|
36 |
+
- - optimization_log_path
|
37 |
+
- null
|
38 |
+
- - optimize_hyperparameters
|
39 |
+
- false
|
40 |
+
- - pruner
|
41 |
+
- median
|
42 |
+
- - sampler
|
43 |
+
- tpe
|
44 |
+
- - save_freq
|
45 |
+
- -1
|
46 |
+
- - save_replay_buffer
|
47 |
+
- false
|
48 |
+
- - seed
|
49 |
+
- 594371
|
50 |
+
- - storage
|
51 |
+
- null
|
52 |
+
- - study_name
|
53 |
+
- null
|
54 |
+
- - tensorboard_log
|
55 |
+
- ''
|
56 |
+
- - trained_agent
|
57 |
+
- ''
|
58 |
+
- - truncate_last_trajectory
|
59 |
+
- true
|
60 |
+
- - uuid
|
61 |
+
- true
|
62 |
+
- - vec_env
|
63 |
+
- dummy
|
64 |
+
- - verbose
|
65 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - gamma
|
3 |
+
- 0.9999
|
4 |
+
- - learning_starts
|
5 |
+
- 10000
|
6 |
+
- - n_timesteps
|
7 |
+
- 1000000.0
|
8 |
+
- - policy
|
9 |
+
- MlpPolicy
|
10 |
+
- - use_sde
|
11 |
+
- false
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3996794ccc2ebc582abd1d4b88b92c3787557cbb0dc02c660172d03cd08e8a8
|
3 |
+
size 1441312
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 339.9461859, "std_reward": 0.8039503468852297, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T20:54:15.191784"}
|
tqc-Swimmer-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3d2c41d31ff85ea897a4982289e0292fb654cb0728e651ee06c585d86ffb9bc
|
3 |
+
size 3274401
|
tqc-Swimmer-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
tqc-Swimmer-v3/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84f45d5854771d5e323734abb6e44008d4858de179f58b9e318fec9e3069fbcc
|
3 |
+
size 557365
|
tqc-Swimmer-v3/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ccd0358f9700f479c03ee8b73189b6e02a93599c282dd2eeeeeb7dac501a459a
|
3 |
+
size 1206941
|
tqc-Swimmer-v3/data
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "sb3_contrib.tqc.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function TQCPolicy.__init__ at 0x7fa8254b7710>",
|
8 |
+
"_build": "<function TQCPolicy._build at 0x7fa8254b77a0>",
|
9 |
+
"_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7fa8254b7830>",
|
10 |
+
"reset_noise": "<function TQCPolicy.reset_noise at 0x7fa8254b78c0>",
|
11 |
+
"make_actor": "<function TQCPolicy.make_actor at 0x7fa8254b7950>",
|
12 |
+
"make_critic": "<function TQCPolicy.make_critic at 0x7fa8254b79e0>",
|
13 |
+
"forward": "<function TQCPolicy.forward at 0x7fa8254b7a70>",
|
14 |
+
"_predict": "<function TQCPolicy._predict at 0x7fa8254b7b00>",
|
15 |
+
"set_training_mode": "<function TQCPolicy.set_training_mode at 0x7fa8254b7b90>",
|
16 |
+
"__abstractmethods__": "frozenset()",
|
17 |
+
"_abc_impl": "<_abc_data object at 0x7fa825516690>"
|
18 |
+
},
|
19 |
+
"verbose": 1,
|
20 |
+
"policy_kwargs": {
|
21 |
+
"use_sde": false
|
22 |
+
},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVAwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgKiUNAAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5R0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLCIWUaAqJQ0AAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEGgSSwCFlGgUh5RSlChLAUsIhZRoKIlDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSwiFlHViLg==",
|
26 |
+
"dtype": "float64",
|
27 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
28 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
29 |
+
"bounded_below": "[False False False False False False False False]",
|
30 |
+
"bounded_above": "[False False False False False False False False]",
|
31 |
+
"_np_random": null,
|
32 |
+
"_shape": [
|
33 |
+
8
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gASVFwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgKiUMIAACAvwAAgL+UdJRijARoaWdolGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgKiUMIAACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMCAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgoiUMCAQGUdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoOIwFc3RhdGWUfZQojANrZXmUaBBoEksAhZRoFIeUUpQoSwFNcAKFlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwKFlHViLg==",
|
39 |
+
"dtype": "float32",
|
40 |
+
"low": "[-1. -1.]",
|
41 |
+
"high": "[1. 1.]",
|
42 |
+
"bounded_below": "[ True True]",
|
43 |
+
"bounded_above": "[ True True]",
|
44 |
+
"_np_random": "RandomState(MT19937)",
|
45 |
+
"_shape": [
|
46 |
+
2
|
47 |
+
]
|
48 |
+
},
|
49 |
+
"n_envs": 1,
|
50 |
+
"num_timesteps": 1000000,
|
51 |
+
"_total_timesteps": 1000000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": 0,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1635497703.6835935,
|
56 |
+
"learning_rate": 0.0003,
|
57 |
+
"tensorboard_log": null,
|
58 |
+
"lr_schedule": {
|
59 |
+
":type:": "<class 'function'>",
|
60 |
+
":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
61 |
+
},
|
62 |
+
"_last_obs": null,
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gASVygAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNAulAOAS5wvT+Khq1Zdc3TvzrRgfLS1fA/Yito5ULC4z8f+HNMrA3/vwXTjqtmwQBA0jvLDCWtB8A6xd1Dajbwv5R0lGIu"
|
70 |
+
},
|
71 |
+
"_episode_num": 1000,
|
72 |
+
"use_sde": false,
|
73 |
+
"sde_sample_freq": -1,
|
74 |
+
"_current_progress_remaining": 0.0,
|
75 |
+
"ep_info_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gASVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlRCsqtcFdECUhpRSlIwBbJRN6AOMAXSUR0DHQLvNmlImdX2UKGgGaAloD0MI0xHAzeL6c0CUhpRSlGgVTegDaBZHQMdHHSXD3uh1fZQoaAZoCWgPQwiJ7lnXqBJ0QJSGlFKUaBVN6ANoFkdAx02Mm7aqTHV9lChoBmgJaA9DCGv0aoBSyHRAlIaUUpRoFU3oA2gWR0DHVAE8s+V1dX2UKGgGaAloD0MIFeRnI9ecdECUhpRSlGgVTegDaBZHQMdabp/oaDR1fZQoaAZoCWgPQwieQNgplr50QJSGlFKUaBVN6ANoFkdAx2DeHY6GQHV9lChoBmgJaA9DCKCM8WG2EnVAlIaUUpRoFU3oA2gWR0DHZz2iDdxidX2UKGgGaAloD0MIE9VbA1vNdECUhpRSlGgVTegDaBZHQMdtsLKFIup1fZQoaAZoCWgPQwhcdoh/GMV0QJSGlFKUaBVN6ANoFkdAx3P/T7VJ+XV9lChoBmgJaA9DCLsnDwv1yHNAlIaUUpRoFU3oA2gWR0DHekCqbSZ0dX2UKGgGaAloD0MI93ghHd6rc0CUhpRSlGgVTegDaBZHQMeDwlSbYsd1fZQoaAZoCWgPQwh9kdCW81ZzQJSGlFKUaBVN6ANoFkdAx4omn2qT83V9lChoBmgJaA9DCHtntFXJDnRAlIaUUpRoFU3oA2gWR0DHkIvRTjvNdX2UKGgGaAloD0MIyGDFqZZ+c0CUhpRSlGgVTegDaBZHQMeW/cBMi8p1fZQoaAZoCWgPQwhLPQtCefdzQJSGlFKUaBVN6ANoFkdAx51jiTdLx3V9lChoBmgJaA9DCBqIZTOHEHRAlIaUUpRoFU3oA2gWR0DHo8tb5dnkdX2UKGgGaAloD0MI+WcG8QEHdECUhpRSlGgVTegDaBZHQMeqPD6N2kl1fZQoaAZoCWgPQwhRai+i7Td0QJSGlFKUaBVN6ANoFkdAx7C4UxmCiHV9lChoBmgJaA9DCLTIdr7fI3RAlIaUUpRoFU3oA2gWR0DHtyb/+85CdX2UKGgGaAloD0MImFEstzT3dECUhpRSlGgVTegDaBZHQMe9bf7Jnxt1fZQoaAZoCWgPQwgQPpRoyVh0QJSGlFKUaBVN6ANoFkdAx8awxi5NGnV9lChoBmgJaA9DCIekFkomU3RAlIaUUpRoFU3oA2gWR0DHzPbr1M/RdX2UKGgGaAloD0MI8x5nmvDZdECUhpRSlGgVTegDaBZHQMfTPmCyyD91fZQoaAZoCWgPQwgR/kXQmCJ0QJSGlFKUaBVN6ANoFkdAx9m1YdQwbnV9lChoBmgJaA9DCIgq/BmeP3RAlIaUUpRoFU3oA2gWR0DH4Cut2cJ/dX2UKGgGaAloD0MI9FDbhtG9c0CUhpRSlGgVTegDaBZHQMfmjkRzzVd1fZQoaAZoCWgPQwhvRWKCmphzQJSGlFKUaBVN6ANoFkdAx+zwZDzAe3V9lChoBmgJaA9DCCCXOPIAuXNAlIaUUpRoFU3oA2gWR0DH81iufVZtdX2UKGgGaAloD0MI++dpwGALdECUhpRSlGgVTegDaBZHQMf513u/k/91fZQoaAZoCWgPQwgq5bUS+ll0QJSGlFKUaBVN6ANoFkdAyABLCcf/3nV9lChoBmgJaA9DCLCryVOWLnRAlIaUUpRoFU3oA2gWR0DICcAxSHdodX2UKGgGaAloD0MIIQclzPR2dECUhpRSlGgVTegDaBZHQMgQKVkMCtB1fZQoaAZoCWgPQwhpxw2/m4N0QJSGlFKUaBVN6ANoFkdAyBaDsyi22HV9lChoBmgJaA9DCFpiZTQyfnRAlIaUUpRoFU3oA2gWR0DIHN2DlHSXdX2UKGgGaAloD0MISZwVUdOEdECUhpRSlGgVTegDaBZHQMgjPHmaH9F1fZQoaAZoCWgPQwiPccXF0ah0QJSGlFKUaBVN6ANoFkdAyCmXZ1V5r3V9lChoBmgJaA9DCOPdkbHav3RAlIaUUpRoFU3oA2gWR0DIL/11bJOndX2UKGgGaAloD0MIDJOpgpFydUCUhpRSlGgVTegDaBZHQMg2Z0Ltu1p1fZQoaAZoCWgPQwjOjH403OV0QJSGlFKUaBVN6ANoFkdAyDzKVQAMlXV9lChoBmgJaA9DCK/RcqCHFHVAlIaUUpRoFU3oA2gWR0DIQxxtFa0QdX2UKGgGaAloD0MITu/i/XhSdECUhpRSlGgVTegDaBZHQMhMl7or4Fl1fZQoaAZoCWgPQwgMzuDvVyl0QJSGlFKUaBVN6ANoFkdAyFMQUB4lhXV9lChoBmgJaA9DCM7eGW1VX3RAlIaUUpRoFU3oA2gWR0DIWXqD0163dX2UKGgGaAloD0MI5jxjXzJHdECUhpRSlGgVTegDaBZHQMhf4UornT11fZQoaAZoCWgPQwg9C0J53090QJSGlFKUaBVN6ANoFkdAyGZLt8/lhnV9lChoBmgJaA9DCHnOFhDarXRAlIaUUpRoFU3oA2gWR0DIbMQOz6acdX2UKGgGaAloD0MIHEXWGsr/dECUhpRSlGgVTegDaBZHQMhzEIkZ75V1fZQoaAZoCWgPQwhLcsCuJqh0QJSGlFKUaBVN6ANoFkdAyHlZPOY6XHV9lChoBmgJaA9DCL6JITkZGnRAlIaUUpRoFU3oA2gWR0DIf5+ff4yodX2UKGgGaAloD0MI0F59PPRydECUhpRSlGgVTegDaBZHQMiGATOgQH11fZQoaAZoCWgPQwiespqup1R0QJSGlFKUaBVN6ANoFkdAyI+CynDR+nV9lChoBmgJaA9DCNzY7Ei1FnRAlIaUUpRoFU3oA2gWR0DIlfgIhQnAdX2UKGgGaAloD0MIpzy6EdYedECUhpRSlGgVTegDaBZHQMicc8ujASF1fZQoaAZoCWgPQwhK8IY0Kp50QJSGlFKUaBVN6ANoFkdAyKLfRwZOz3V9lChoBmgJaA9DCIS53cv9xHRAlIaUUpRoFU3oA2gWR0DIqV0KTjebdX2UKGgGaAloD0MISZ2AJkKhdECUhpRSlGgVTegDaBZHQMiv0uO801t1fZQoaAZoCWgPQwgXZMvyNaF0QJSGlFKUaBVN6ANoFkdAyLYyB/7SA3V9lChoBmgJaA9DCJrN4zAYm3RAlIaUUpRoFU3oA2gWR0DIvJu7L+xXdX2UKGgGaAloD0MIokEKngKTdECUhpRSlGgVTegDaBZHQMjDEah6By11fZQoaAZoCWgPQwj1ZWmnJrJ0QJSGlFKUaBVN6ANoFkdAyMlRDjzZpXV9lChoBmgJaA9DCPH1tS61jHRAlIaUUpRoFU3oA2gWR0DI0nKTGHYZdX2UKGgGaAloD0MIPdUhN4OjdECUhpRSlGgVTegDaBZHQMjYtPFvQ4V1fZQoaAZoCWgPQwjLoNrghL90QJSGlFKUaBVN6ANoFkdAyN8e1RceKnV9lChoBmgJaA9DCEfKFkm7hXRAlIaUUpRoFU3oA2gWR0DI5YxxPwd9dX2UKGgGaAloD0MIxLKZQ9KHdECUhpRSlGgVTegDaBZHQMjr/vFFUhp1fZQoaAZoCWgPQwgJjPUNTPl0QJSGlFKUaBVN6ANoFkdAyPJug3974XV9lChoBmgJaA9DCAHaVrOOu3RAlIaUUpRoFU3oA2gWR0DI+UDKV6eHdX2UKGgGaAloD0MIRwA3i9eldECUhpRSlGgVTegDaBZHQMj/gMFdLQJ1fZQoaAZoCWgPQwjcaABvwZt0QJSGlFKUaBVN6ANoFkdAyQXYHGCI13V9lChoBmgJaA9DCNWzIJT3nnRAlIaUUpRoFU3oA2gWR0DJDBnYao/BdX2UKGgGaAloD0MI3pBGBU6EdECUhpRSlGgVTegDaBZHQMkVeZ9/jKh1fZQoaAZoCWgPQwjpmsk3m6t0QJSGlFKUaBVN6ANoFkdAyRvBHim2s3V9lChoBmgJaA9DCGE0K9uHiHRAlIaUUpRoFU3oA2gWR0DJIi30TURWdX2UKGgGaAloD0MIxouFIbKldECUhpRSlGgVTegDaBZHQMkoga9kBjp1fZQoaAZoCWgPQwh4RluVhMx0QJSGlFKUaBVN6ANoFkdAyS7gq1gH/3V9lChoBmgJaA9DCLxYGCKns3RAlIaUUpRoFU3oA2gWR0DJNU4VM23sdX2UKGgGaAloD0MIgPChREuqdECUhpRSlGgVTegDaBZHQMk70gnlXBB1fZQoaAZoCWgPQwhnnfF9cVt0QJSGlFKUaBVN6ANoFkdAyUJLIre67XV9lChoBmgJaA9DCK9EoPqHlHRAlIaUUpRoFU3oA2gWR0DJSKR4Y77sdX2UKGgGaAloD0MInyKHiNugdECUhpRSlGgVTegDaBZHQMlO+dyT6i11fZQoaAZoCWgPQwgOSS2UjL50QJSGlFKUaBVN6ANoFkdAyViBcVQAMnV9lChoBmgJaA9DCGgG8YGd53RAlIaUUpRoFU3oA2gWR0DJXrWhsZYQdX2UKGgGaAloD0MIONpxw6+odECUhpRSlGgVTegDaBZHQMlkwfZuhsZ1fZQoaAZoCWgPQwi+Ed2z7pV0QJSGlFKUaBVN6ANoFkdAyWrwC8vmHXV9lChoBmgJaA9DCPPJiuHq/nRAlIaUUpRoFU3oA2gWR0DJcO2s/6frdX2UKGgGaAloD0MIDMufb8uwdECUhpRSlGgVTegDaBZHQMl3ERzijtZ1fZQoaAZoCWgPQwjlXmBWqJ50QJSGlFKUaBVN6ANoFkdAyX1k1twaSHV9lChoBmgJaA9DCKcGms+5lnRAlIaUUpRoFU3oA2gWR0DJg835vcagdX2UKGgGaAloD0MIZJY9CayIdECUhpRSlGgVTegDaBZHQMmKQqRU3n91fZQoaAZoCWgPQwjoLR7ec7Z0QJSGlFKUaBVN6ANoFkdAyZCtDu0CzXV9lChoBmgJaA9DCNEhcCQQjHRAlIaUUpRoFU3oA2gWR0DJmjrnA6+4dX2UKGgGaAloD0MIoijQJ/KTdECUhpRSlGgVTegDaBZHQMmgtmaYu011fZQoaAZoCWgPQwiskPKT6r50QJSGlFKUaBVN6ANoFkdAyac1BHkLhXV9lChoBmgJaA9DCPa0w1/TrHRAlIaUUpRoFU3oA2gWR0DJrZ2PaL4vdX2UKGgGaAloD0MIXfksz4PndECUhpRSlGgVTegDaBZHQMm0DBz3h4t1fZQoaAZoCWgPQwgd44qL46h0QJSGlFKUaBVN6ANoFkdAybqFzg/C7HV9lChoBmgJaA9DCBEawcZ153RAlIaUUpRoFU3oA2gWR0DJwN19QXQ/dX2UKGgGaAloD0MIsi0DztKHdECUhpRSlGgVTegDaBZHQMnHQxGMGX51fZQoaAZoCWgPQwjMC7CPDpJ0QJSGlFKUaBVN6ANoFkdAyc23t7a7E3V9lChoBmgJaA9DCA4TDVLwlXRAlIaUUpRoFU3oA2gWR0DJ074HgP3BdWUu"
|
78 |
+
},
|
79 |
+
"ep_success_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
+
},
|
83 |
+
"_n_updates": 990000,
|
84 |
+
"buffer_size": 1,
|
85 |
+
"batch_size": 256,
|
86 |
+
"learning_starts": 10000,
|
87 |
+
"tau": 0.005,
|
88 |
+
"gamma": 0.9999,
|
89 |
+
"gradient_steps": 1,
|
90 |
+
"optimize_memory_usage": false,
|
91 |
+
"replay_buffer_class": {
|
92 |
+
":type:": "<class 'abc.ABCMeta'>",
|
93 |
+
":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
94 |
+
"__module__": "stable_baselines3.common.buffers",
|
95 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
96 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7fa825c90b90>",
|
97 |
+
"add": "<function ReplayBuffer.add at 0x7fa825c90c20>",
|
98 |
+
"sample": "<function ReplayBuffer.sample at 0x7fa8257f77a0>",
|
99 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fa8257f7830>",
|
100 |
+
"__abstractmethods__": "frozenset()",
|
101 |
+
"_abc_impl": "<_abc_data object at 0x7fa825ce85d0>"
|
102 |
+
},
|
103 |
+
"replay_buffer_kwargs": {},
|
104 |
+
"train_freq": {
|
105 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
106 |
+
":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
107 |
+
},
|
108 |
+
"use_sde_at_warmup": false,
|
109 |
+
"target_entropy": -2.0,
|
110 |
+
"ent_coef": "auto",
|
111 |
+
"target_update_interval": 1,
|
112 |
+
"top_quantiles_to_drop_per_net": 2,
|
113 |
+
"remove_time_limit_termination": false
|
114 |
+
}
|
tqc-Swimmer-v3/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d83c21fbd10f0f2df6e6b23956cdc8f0371cac330fe6d9eb86dd0f80100125bd
|
3 |
+
size 1255
|
tqc-Swimmer-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:650b1bb7fc4a94e8dbe7e1136fdb9ee54e17d363cdca80d4e933d548ce1f0f7c
|
3 |
+
size 1487877
|
tqc-Swimmer-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b935a7abb2509839a034b2b4317bd32584fd80435bf46b961e7d88c34d89af4
|
3 |
+
size 747
|
tqc-Swimmer-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f4d01dab65bdbed916cd28c3ed5e66da7a2e86e061f967828738ae11957d206
|
3 |
+
size 62006
|