Initial commit
Browse files- .gitattributes +2 -0
- README.md +60 -0
- args.yml +65 -0
- config.yml +13 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- trpo-MountainCarContinuous-v0.zip +3 -0
- trpo-MountainCarContinuous-v0/_stable_baselines3_version +1 -0
- trpo-MountainCarContinuous-v0/data +99 -0
- trpo-MountainCarContinuous-v0/policy.optimizer.pth +3 -0
- trpo-MountainCarContinuous-v0/policy.pth +3 -0
- trpo-MountainCarContinuous-v0/pytorch_variables.pth +3 -0
- trpo-MountainCarContinuous-v0/system_info.txt +7 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
29 |
+
vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCarContinuous-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TRPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 92.59 +/- 0.08
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: MountainCarContinuous-v0
|
20 |
+
type: MountainCarContinuous-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **TRPO** Agent playing **MountainCarContinuous-v0**
|
24 |
+
This is a trained model of a **TRPO** agent playing **MountainCarContinuous-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo trpo --env MountainCarContinuous-v0 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo trpo --env MountainCarContinuous-v0 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo trpo --env MountainCarContinuous-v0 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo trpo --env MountainCarContinuous-v0 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('n_envs', 2),
|
54 |
+
('n_timesteps', 50000),
|
55 |
+
('normalize', True),
|
56 |
+
('policy', 'MlpPolicy'),
|
57 |
+
('sde_sample_freq', 4),
|
58 |
+
('use_sde', True),
|
59 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
60 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- trpo
|
4 |
+
- - env
|
5 |
+
- MountainCarContinuous-v0
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 20
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- logs
|
18 |
+
- - log_interval
|
19 |
+
- -1
|
20 |
+
- - n_eval_envs
|
21 |
+
- 10
|
22 |
+
- - n_evaluations
|
23 |
+
- 20
|
24 |
+
- - n_jobs
|
25 |
+
- 1
|
26 |
+
- - n_startup_trials
|
27 |
+
- 10
|
28 |
+
- - n_timesteps
|
29 |
+
- -1
|
30 |
+
- - n_trials
|
31 |
+
- 10
|
32 |
+
- - no_optim_plots
|
33 |
+
- false
|
34 |
+
- - num_threads
|
35 |
+
- -1
|
36 |
+
- - optimization_log_path
|
37 |
+
- null
|
38 |
+
- - optimize_hyperparameters
|
39 |
+
- false
|
40 |
+
- - pruner
|
41 |
+
- median
|
42 |
+
- - sampler
|
43 |
+
- tpe
|
44 |
+
- - save_freq
|
45 |
+
- -1
|
46 |
+
- - save_replay_buffer
|
47 |
+
- false
|
48 |
+
- - seed
|
49 |
+
- 1144499275
|
50 |
+
- - storage
|
51 |
+
- null
|
52 |
+
- - study_name
|
53 |
+
- null
|
54 |
+
- - tensorboard_log
|
55 |
+
- ''
|
56 |
+
- - trained_agent
|
57 |
+
- ''
|
58 |
+
- - truncate_last_trajectory
|
59 |
+
- true
|
60 |
+
- - uuid
|
61 |
+
- false
|
62 |
+
- - vec_env
|
63 |
+
- dummy
|
64 |
+
- - verbose
|
65 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - n_envs
|
3 |
+
- 2
|
4 |
+
- - n_timesteps
|
5 |
+
- 50000
|
6 |
+
- - normalize
|
7 |
+
- true
|
8 |
+
- - policy
|
9 |
+
- MlpPolicy
|
10 |
+
- - sde_sample_freq
|
11 |
+
- 4
|
12 |
+
- - use_sde
|
13 |
+
- true
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90f27a8e037a04e3759eb14f08ed9ab4b0899318e73f6580b2035296ec932a11
|
3 |
+
size 255010
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 92.58768790000002, "std_reward": 0.07901151592324876, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T13:14:09.620114"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7a50463941607a37d6a35ef2b79dd7eae2dbe222a76ac8ed9eb53bc044c47d8
|
3 |
+
size 8515
|
trpo-MountainCarContinuous-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:873a02f90c4815d20f36356968eef9fcf7a0c1fa01ce087b8661ddcac6c20c55
|
3 |
+
size 95432
|
trpo-MountainCarContinuous-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
trpo-MountainCarContinuous-v0/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb02cfc6950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb02cfc69e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb02cfc6a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb02cfc6b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb02cfc6b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb02cfc6c20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb02cfc6cb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb02cfc6d40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb02cfc6dd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb02cfc6e60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb02cfc6ef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb02d017840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVhwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgKiUMImpmZvylcj72UdJRijARoaWdolGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgKiUMImpkZPylcjz2UdJRijA1ib3VuZGVkX2JlbG93lGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMCAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgoiUMCAQGUdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLAoWUdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"low": "[-1.2 -0.07]",
|
28 |
+
"high": "[0.6 0.07]",
|
29 |
+
"bounded_below": "[ True True]",
|
30 |
+
"bounded_above": "[ True True]",
|
31 |
+
"_np_random": null,
|
32 |
+
"_shape": [
|
33 |
+
2
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gASVCwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgKiUMEAACAv5R0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLAYWUaAqJQwQAAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsBhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwGFlGgoiWgrdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoN4wFc3RhdGWUfZQojANrZXmUaBBoEksAhZRoFIeUUpQoSwFNcAKFlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwGFlHViLg==",
|
39 |
+
"dtype": "float32",
|
40 |
+
"low": "[-1.]",
|
41 |
+
"high": "[1.]",
|
42 |
+
"bounded_below": "[ True]",
|
43 |
+
"bounded_above": "[ True]",
|
44 |
+
"_np_random": "RandomState(MT19937)",
|
45 |
+
"_shape": [
|
46 |
+
1
|
47 |
+
]
|
48 |
+
},
|
49 |
+
"n_envs": 2,
|
50 |
+
"num_timesteps": 53248,
|
51 |
+
"_total_timesteps": 50000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": 0,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1640768503.2068126,
|
56 |
+
"learning_rate": 0.001,
|
57 |
+
"tensorboard_log": null,
|
58 |
+
"lr_schedule": {
|
59 |
+
":type:": "<class 'function'>",
|
60 |
+
":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
61 |
+
},
|
62 |
+
"_last_obs": null,
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gASVigAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgAAlHSUYi4="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gASVmgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwJLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMQMun2vgAAAAD2yxC/AAAAAJR0lGIu"
|
70 |
+
},
|
71 |
+
"_episode_num": 0,
|
72 |
+
"use_sde": true,
|
73 |
+
"sde_sample_freq": 4,
|
74 |
+
"_current_progress_remaining": -0.0649599999999999,
|
75 |
+
"ep_info_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFdbyuIRAbCMAWyUS1SMAXSUR0A+80jC53C9dX2UKGgGR0BVssg2ZRbbaAdLmmgIR0A+9RlYlpoLdX2UKGgGR0BXnuPvKEFoaAdLVGgIR0A/DZx7zCk5dX2UKGgGR0BWTu+mFajfaAdLkGgIR0A/n95Qgs9TdX2UKGgGR0BXK0pRXOnmaAdLVmgIR0A/qNFz+3pfdX2UKGgGR0BXOekHlfZ3aAdLXWgIR0A/uayrxRVIdX2UKGgGR0BXgOyAxzq9aAdLRmgIR0A/zVwxWT5gdX2UKGgGR0BWXkhNdqtYaAdLjmgIR0A/0GKAJ9iMdX2UKGgGR0BXYDO1OTJRaAdLbWgIR0A/68k2P1cudX2UKGgGR0BVXaagElmfaAdLuGgIR0BAAzpgTh5xdX2UKGgGR0BWccy8BdUsaAdLiGgIR0BACyr5qM3qdX2UKGgGR0BW/5cophF3aAdLWGgIR0BAEKKpDNQkdX2UKGgGR0BWiu7lJYknaAdLf2gIR0BAHaWPcSGrdX2UKGgGR0BWpDpxFRYSaAdLcWgIR0BAIY7zTWoWdX2UKGgGR0BXbx7mdRR/aAdLVWgIR0BAKwFLWZqmdX2UKGgGR0BWN8189fTkaAdLkWgIR0BAQRC6Ymb9dX2UKGgGR0BVjoFA3T/iaAdL2GgIR0BAQoomXw9adX2UKGgGR0BXF61og3cYaAdLb2gIR0BAUUJOWSlndX2UKGgGR0BVtQBcRlH0aAdLoGgIR0BAWdYGMXJpdX2UKGgGR0BVhCfL9uP4aAdLt2gIR0BAa6Zpi7TVdX2UKGgGR0BWJyIUJv5yaAdLm2gIR0BAcCS7oStedX2UKGgGR0BV1/ATIvJzaAdLnmgIR0BAg25H3DekdX2UKGgGR0BWMkF8ohIOaAdLnGgIR0BAh/7rLQokdX2UKGgGR0BWYS22G7BgaAdLmmgIR0BAm4dhiLEUdX2UKGgGR0BVgqTbFjusaAdLt2gIR0BApJDE3sHCdX2UKGgGR0BV+HRLK3d9aAdLoWgIR0BAvGa6STyKdX2UKGgGR0BUSHM+u/1yaAdL+WgIR0BAwMIu5BkadX2UKGgGR0BXRJK3/givaAdLUWgIR0BAyAyuZCv6dX2UKGgGR0BVxQS8J2MbaAdLsGgIR0BA2hI4EOiGdX2UKGgGR0BVTMebNKRMaAdLw2gIR0BA5Cb2Dg62dX2UKGgGR0BXJ51RtP56aAdLV2gIR0BA8Kynk1dgdX2UKGgGR0BV5Oh9LHuJaAdLsGgIR0BA82WyC4BndX2UKGgGR0BW1r655JK8aAdLe2gIR0BBTu4PPLPldX2UKGgGR0BWfkY4yXUpaAdLjmgIR0BBVQCKaXrudX2UKGgGR0BWOMeS0Sh8aAdLpGgIR0BBaY9Pk7wKdX2UKGgGR0BWkMNUfgaWaAdLiGgIR0BBazpxFRYSdX2UKGgGR0BV5QM2FWXDaAdLmmgIR0BBgSwnpjc3dX2UKGgGR0BWgjxXnyNGaAdLmWgIR0BBgoRywOe8dX2UKGgGR0BXSqeGwiaBaAdLX2gIR0BBkC6H0se5dX2UKGgGR0BXXCZSeiBYaAdLSGgIR0BBmx1xKg7HdX2UKGgGR0BUiRz/6wdKaAdL0WgIR0BBoA+QlruZdX2UKGgGR0BW21vES/TLaAdLdWgIR0BBrFl05lvqdX2UKGgGR0BW5HRsuWa+aAdLZ2gIR0BBrxXwLE1mdX2UKGgGR0BXQuGwiaAnaAdLUGgIR0BBuB4MWoFWdX2UKGgGR0BXUvIfbKzSaAdLR2gIR0BBwrWRRuTBdX2UKGgGR0BVlckMTewcaAdLrmgIR0BByNC7btZ3dX2UKGgGR0BW7a9CeEqUaAdLX2gIR0BB0M6RyOrAdX2UKGgGR0BVsRsQ/X5GaAdLqGgIR0BB4WmgrYoRdX2UKGgGR0BWIsSCe2/jaAdLkmgIR0BB5eAVfu1GdX2UKGgGR0BVodY0VJtjaAdLoGgIR0BB9/TkQwsYdX2UKGgGR0BULVJL/S6UaAdL4mgIR0BCBWcjJMg2dX2UKGgGR0BVRYQarFOxaAdLrGgIR0BCD/j81n/UdX2UKGgGR0BWBUrTYukDaAdLlmgIR0BCGqaXrt3OdX2UKGgGR0BVySHZbpu/aAdLkWgIR0BCJIikfs/qdX2UKGgGR0BWONf5ULlWaAdLjmgIR0BCLpIczZYgdX2UKGgGR0BWTFtXPqs2aAdLiGgIR0BCN9fLLZBcdX2UKGgGR0BWNqwIMSbpaAdLh2gIR0BCQlL39JjEdX2UKGgGR0BWiR73PAwgaAdLdmgIR0BCScWj4593dX2UKGgGR0BXKF54W1twaAdLWmgIR0BCUQDvE0iydX2UKGgGR0BXbfatcObzaAdLUGgIR0BCVlMIu5BkdX2UKGgGR0BV5bNjbzshaAdLlGgIR0BCZ4pc5bQkdX2UKGgGR0BVRKWPcSGraAdLu2gIR0BCc3IdU83ddX2UKGgGR0BXcuLzf779aAdLXmgIR0BCvPnr6ciGdX2UKGgGR0BXIz5wfhddaAdLYWgIR0BCyHD7655JdX2UKGgGR0BXJ+YhMajvaAdLWWgIR0BCyfA0sOG1dX2UKGgGR0BWpVZPl+3IaAdLd2gIR0BC2koWpIczdX2UKGgGR0BWOphrnDBNaAdLfmgIR0BC3PEsJ6Y3dX2UKGgGR0BXWxwhnrY5aAdLSmgIR0BC5a/7BO58dX2UKGgGR0BXYPCEYfnwaAdLVWgIR0BC6gFxGUfQdX2UKGgGR0BXIcANoakzaAdLXGgIR0BC8+NT987ZdX2UKGgGR0BVayU1Q66raAdLpGgIR0BDIeDe0ojOdX2UKGgGR0BWb5vkzXSSaAdLfWgIR0BDJejua4MGdX2UKGgGR0BXaXljmSyMaAdLUmgIR0BDLuYx+KCQdX2UKGgGR0BXVjaTOgQIaAdLTGgIR0BDMdJz1bqydX2UKGgGR0BXP7vXsgMdaAdLS2gIR0BDOrIgeRxMdX2UKGgGR0BXWoY77sOYaAdLS2gIR0BDRaEBbOeKdX2UKGgGR0BVTbAk9lmOaAdLwGgIR0BDTnzg/C66dX2UKGgGR0BXHMJtzjm0aAdLV2gIR0BDUlEAo5PudX2UKGgGR0BXXUqhDgIhaAdLUWgIR0BDXniWE9McdX2UKGgGR0BWMIXKr7wbaAdLnWgIR0BDZpPIn0CjdX2UKGgGR0BXTTbnHNoraAdLTGgIR0BDapYLb5/LdX2UKGgGR0BXKBgVoHs1aAdLT2gIR0BDdwvpQk5ZdX2UKGgGR0BWHaO5rgwXaAdLl2gIR0BDfcSoOx0NdX2UKGgGR0BWoOOGTLW7aAdLcGgIR0BDjh6jWTX8dX2UKGgGR0BVZYq0+kgwaAdLumgIR0BDkiN0eU6gdX2UKGgGR0BXU1xKg7HRaAdLWWgIR0BDmxISUTtcdX2UKGgGR0BXeL9MsYl6aAdLRmgIR0BDpiJwbVBldX2UKGgGR0BWIo9kjHGTaAdLjmgIR0BDp9M9KVY7dX2UKGgGR0BXVC5/b0voaAdLSmgIR0BDs1Cw8nuzdX2UKGgGR0BXCOFtbcGkaAdLX2gIR0BDtOyeI2wWdX2UKGgGR0BXGZIH1OCYaAdLXGgIR0BDwM495hScdX2UKGgGR0BWhM/lhgE2aAdLhmgIR0BDyIZ62OQydX2UKGgGR0BXTxFZxJd0aAdLTmgIR0BDzE/r0J4TdX2UKGgGR0BWBrJ0W/JvaAdLi2gIR0BD4eee4Cp4dX2UKGgGR0BVejHsC1Z1aAdLvWgIR0BD5YuK4x1xdX2UKGgGR0BXRYBNmDlHaAdLTWgIR0BD7bw8W9DhdX2UKGgGR0BXWinHeaa1aAdLTmgIR0BD8UvGp++edX2UKGgGR0BXZbgsK9f1aAdLUWgIR0BD+TvAoG6gdX2UKGgGR0BV5Dr7fpEAaAdLm2gIR0BEB1J17pmmdX2UKGgGR0BXELFKkEcLaAdLbGgIR0BECKeK8+RpdWUu"
|
78 |
+
},
|
79 |
+
"ep_success_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
+
},
|
83 |
+
"_n_updates": 13,
|
84 |
+
"n_steps": 2048,
|
85 |
+
"gamma": 0.99,
|
86 |
+
"gae_lambda": 0.95,
|
87 |
+
"ent_coef": 0.0,
|
88 |
+
"vf_coef": 0.0,
|
89 |
+
"max_grad_norm": 0.0,
|
90 |
+
"normalize_advantage": true,
|
91 |
+
"batch_size": 128,
|
92 |
+
"cg_max_steps": 15,
|
93 |
+
"cg_damping": 0.1,
|
94 |
+
"line_search_shrinking_factor": 0.8,
|
95 |
+
"line_search_max_iter": 10,
|
96 |
+
"target_kl": 0.01,
|
97 |
+
"n_critic_updates": 10,
|
98 |
+
"sub_sampling_factor": 1
|
99 |
+
}
|
trpo-MountainCarContinuous-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9bfaffc783b18f1b0758af6c55ac55b63025a83e4a04102ed1d0b0cdaed8e3f5
|
3 |
+
size 38657
|
trpo-MountainCarContinuous-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:060e058fcae93603f6c6b7f6118980f3d771b2a99673e077e8647c2f9c40ba52
|
3 |
+
size 39870
|
trpo-MountainCarContinuous-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
trpo-MountainCarContinuous-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:675a3b406977e151b0aa2216b3e871faf4eb35ba9cee0884cf3e59329b69c656
|
3 |
+
size 4317
|