Initial commit
Browse files- .gitattributes +2 -0
- README.md +67 -0
- args.yml +65 -0
- config.yml +27 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- trpo-Swimmer-v3.zip +3 -0
- trpo-Swimmer-v3/_stable_baselines3_version +1 -0
- trpo-Swimmer-v3/data +102 -0
- trpo-Swimmer-v3/policy.optimizer.pth +3 -0
- trpo-Swimmer-v3/policy.pth +3 -0
- trpo-Swimmer-v3/pytorch_variables.pth +3 -0
- trpo-Swimmer-v3/system_info.txt +7 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
29 |
+
vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Swimmer-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TRPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 365.53 +/- 1.57
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Swimmer-v3
|
20 |
+
type: Swimmer-v3
|
21 |
+
---
|
22 |
+
|
23 |
+
# **TRPO** Agent playing **Swimmer-v3**
|
24 |
+
This is a trained model of a **TRPO** agent playing **Swimmer-v3**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo trpo --env Swimmer-v3 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo trpo --env Swimmer-v3 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo trpo --env Swimmer-v3 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo trpo --env Swimmer-v3 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('batch_size', 128),
|
54 |
+
('cg_damping', 0.1),
|
55 |
+
('cg_max_steps', 25),
|
56 |
+
('gae_lambda', 0.95),
|
57 |
+
('gamma', 0.9999),
|
58 |
+
('learning_rate', 0.001),
|
59 |
+
('n_critic_updates', 20),
|
60 |
+
('n_envs', 2),
|
61 |
+
('n_steps', 1024),
|
62 |
+
('n_timesteps', 1000000.0),
|
63 |
+
('normalize', True),
|
64 |
+
('policy', 'MlpPolicy'),
|
65 |
+
('sub_sampling_factor', 1),
|
66 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
67 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- trpo
|
4 |
+
- - env
|
5 |
+
- Swimmer-v3
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 20
|
10 |
+
- - eval_freq
|
11 |
+
- 50000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- logs
|
18 |
+
- - log_interval
|
19 |
+
- 10
|
20 |
+
- - n_eval_envs
|
21 |
+
- 10
|
22 |
+
- - n_evaluations
|
23 |
+
- 20
|
24 |
+
- - n_jobs
|
25 |
+
- 1
|
26 |
+
- - n_startup_trials
|
27 |
+
- 10
|
28 |
+
- - n_timesteps
|
29 |
+
- -1
|
30 |
+
- - n_trials
|
31 |
+
- 10
|
32 |
+
- - no_optim_plots
|
33 |
+
- false
|
34 |
+
- - num_threads
|
35 |
+
- -1
|
36 |
+
- - optimization_log_path
|
37 |
+
- null
|
38 |
+
- - optimize_hyperparameters
|
39 |
+
- false
|
40 |
+
- - pruner
|
41 |
+
- median
|
42 |
+
- - sampler
|
43 |
+
- tpe
|
44 |
+
- - save_freq
|
45 |
+
- -1
|
46 |
+
- - save_replay_buffer
|
47 |
+
- false
|
48 |
+
- - seed
|
49 |
+
- 3578176095
|
50 |
+
- - storage
|
51 |
+
- null
|
52 |
+
- - study_name
|
53 |
+
- null
|
54 |
+
- - tensorboard_log
|
55 |
+
- ''
|
56 |
+
- - trained_agent
|
57 |
+
- ''
|
58 |
+
- - truncate_last_trajectory
|
59 |
+
- true
|
60 |
+
- - uuid
|
61 |
+
- false
|
62 |
+
- - vec_env
|
63 |
+
- dummy
|
64 |
+
- - verbose
|
65 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 128
|
4 |
+
- - cg_damping
|
5 |
+
- 0.1
|
6 |
+
- - cg_max_steps
|
7 |
+
- 25
|
8 |
+
- - gae_lambda
|
9 |
+
- 0.95
|
10 |
+
- - gamma
|
11 |
+
- 0.9999
|
12 |
+
- - learning_rate
|
13 |
+
- 0.001
|
14 |
+
- - n_critic_updates
|
15 |
+
- 20
|
16 |
+
- - n_envs
|
17 |
+
- 2
|
18 |
+
- - n_steps
|
19 |
+
- 1024
|
20 |
+
- - n_timesteps
|
21 |
+
- 1000000.0
|
22 |
+
- - normalize
|
23 |
+
- true
|
24 |
+
- - policy
|
25 |
+
- MlpPolicy
|
26 |
+
- - sub_sampling_factor
|
27 |
+
- 1
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6eb48b28b8d85947e63c2a8e1e955521ac573786d9e47428aaa2c5c48b77b583
|
3 |
+
size 1444896
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 365.5272635, "std_reward": 1.5657982544289208, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T12:59:38.904672"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e315e5802fb446f158236ba7090a74fa5f963bfa257854116d1fc716bedbc95e
|
3 |
+
size 35782
|
trpo-Swimmer-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c381dbc7e4db47dbe7d8fc5f446f8a61f32eaf41777116aec4c1f78cbb2bc94
|
3 |
+
size 104762
|
trpo-Swimmer-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
trpo-Swimmer-v3/data
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcd61e03950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcd61e039e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcd61e03a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcd61e03b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcd61e03b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcd61e03c20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcd61e03cb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcd61e03d40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcd61e03dd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcd61e03e60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcd61e03ef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fcd61e54840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVAwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgKiUNAAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5R0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLCIWUaAqJQ0AAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEGgSSwCFlGgUh5RSlChLAUsIhZRoKIlDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSwiFlHViLg==",
|
26 |
+
"dtype": "float64",
|
27 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
28 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
29 |
+
"bounded_below": "[False False False False False False False False]",
|
30 |
+
"bounded_above": "[False False False False False False False False]",
|
31 |
+
"_np_random": null,
|
32 |
+
"_shape": [
|
33 |
+
8
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gASVFwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgKiUMIAACAvwAAgL+UdJRijARoaWdolGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgKiUMIAACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMCAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgoiUMCAQGUdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoOIwFc3RhdGWUfZQojANrZXmUaBBoEksAhZRoFIeUUpQoSwFNcAKFlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwKFlHViLg==",
|
39 |
+
"dtype": "float32",
|
40 |
+
"low": "[-1. -1.]",
|
41 |
+
"high": "[1. 1.]",
|
42 |
+
"bounded_below": "[ True True]",
|
43 |
+
"bounded_above": "[ True True]",
|
44 |
+
"_np_random": "RandomState(MT19937)",
|
45 |
+
"_shape": [
|
46 |
+
2
|
47 |
+
]
|
48 |
+
},
|
49 |
+
"n_envs": 2,
|
50 |
+
"num_timesteps": 1001472,
|
51 |
+
"_total_timesteps": 1000000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": 0,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1640686241.1886032,
|
56 |
+
"learning_rate": {
|
57 |
+
":type:": "<class 'function'>",
|
58 |
+
":serialized:": "gASV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
59 |
+
},
|
60 |
+
"tensorboard_log": null,
|
61 |
+
"lr_schedule": {
|
62 |
+
":type:": "<class 'function'>",
|
63 |
+
":serialized:": "gASV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
64 |
+
},
|
65 |
+
"_last_obs": null,
|
66 |
+
"_last_episode_starts": {
|
67 |
+
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gASVigAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgAAlHSUYi4="
|
69 |
+
},
|
70 |
+
"_last_original_obs": {
|
71 |
+
":type:": "<class 'numpy.ndarray'>",
|
72 |
+
":serialized:": "gASVCgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwJLCIaUaAOMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOAgGc2qscofT8K14FHGeaqv4zk491Av7M/DIekAddHoz/g51I8LL2vPzcKZKn6VrO/D8i73BIZtL/aAnWkr8axvxjOJHf+Abg/LAJ9Clk8oD+EbZnLjNGiv3DOyL9ufYi/XfWgNoMktr+odSTbriuuP2iIPcnq75I/AOYYTryMXT+UdJRiLg=="
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gASVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMID+85sBzldkCUhpRSlIwBbJRN6AOMAXSUR0CU4RzqbBoFdX2UKGgGaAloD0MISwLU1HKGdkCUhpRSlGgVTegDaBZHQJThENz8xbl1fZQoaAZoCWgPQwhmLnB5LKV2QJSGlFKUaBVN6ANoFkdAlOrbIkqto3V9lChoBmgJaA9DCNI41O9CsHZAlIaUUpRoFU3oA2gWR0CU6s8ma6SUdX2UKGgGaAloD0MIZyYYzrWtdkCUhpRSlGgVTegDaBZHQJTzyMKkVN51fZQoaAZoCWgPQwh3vp8ar612QJSGlFKUaBVN6ANoFkdAlPO8t9QXRHV9lChoBmgJaA9DCFXAPc/fl3ZAlIaUUpRoFU3oA2gWR0CU/doTwlSkdX2UKGgGaAloD0MI0ZUIVP+ZdkCUhpRSlGgVTegDaBZHQJT9ziQ1aW51fZQoaAZoCWgPQwg+WTFc3YF2QJSGlFKUaBVN6ANoFkdAlQf8stkFwHV9lChoBmgJaA9DCPBpTl4kjXZAlIaUUpRoFU3oA2gWR0CVB/DWK/EgdX2UKGgGaAloD0MInzvB/uvVdkCUhpRSlGgVTegDaBZHQJUReSA6Mit1fZQoaAZoCWgPQwjTiJl9XsR2QJSGlFKUaBVN6ANoFkdAlRFtHpbD/HV9lChoBmgJaA9DCAJIbeLkp3ZAlIaUUpRoFU3oA2gWR0CVG8PyCnP3dX2UKGgGaAloD0MIQE6YMFqxdkCUhpRSlGgVTegDaBZHQJUbt/c32mJ1fZQoaAZoCWgPQwiL+49MB712QJSGlFKUaBVN6ANoFkdAlSUHcDbJwXV9lChoBmgJaA9DCFq3Qe13yHZAlIaUUpRoFU3oA2gWR0CVJPuIAOridX2UKGgGaAloD0MI5Xyx92LxdkCUhpRSlGgVTegDaBZHQJUvWQSzw+d1fZQoaAZoCWgPQwiMZI9Qc8V2QJSGlFKUaBVN6ANoFkdAlS9NVJcxCnV9lChoBmgJaA9DCAETuHU3tHZAlIaUUpRoFU3oA2gWR0CVOW8MNMGpdX2UKGgGaAloD0MIJ02DornGdkCUhpRSlGgVTegDaBZHQJU5YxKxs2x1fZQoaAZoCWgPQwhHVRNE3dd2QJSGlFKUaBVN6ANoFkdAlULzuKGcnXV9lChoBmgJaA9DCBJosKlzuHZAlIaUUpRoFU3oA2gWR0CVQue2d/aydX2UKGgGaAloD0MIHAx1WCGidkCUhpRSlGgVTegDaBZHQJVNPTx5LRN1fZQoaAZoCWgPQwjEmV/NwaJ2QJSGlFKUaBVN6ANoFkdAlU0xPKuB+XV9lChoBmgJaA9DCGzqPCr+0HZAlIaUUpRoFU3oA2gWR0CVVrt4A0bcdX2UKGgGaAloD0MIzk9xHLipdkCUhpRSlGgVTegDaBZHQJVWr3fyf+V1fZQoaAZoCWgPQwjQ7/s3r5N2QJSGlFKUaBVN6ANoFkdAlWFfXXiBG3V9lChoBmgJaA9DCPesa7Rc73ZAlIaUUpRoFU3oA2gWR0CVYVN2C/XYdX2UKGgGaAloD0MI2NR5VLywdkCUhpRSlGgVTegDaBZHQJVq/FqBVdZ1fZQoaAZoCWgPQwgV5Gcjl912QJSGlFKUaBVN6ANoFkdAlWrwbp/wzHV9lChoBmgJaA9DCHP3OT4a7nZAlIaUUpRoFU3oA2gWR0CVdSpWV/tqdX2UKGgGaAloD0MIacTMPk/DdkCUhpRSlGgVTegDaBZHQJV1HqX4TK11fZQoaAZoCWgPQwgJpS+EHOl2QJSGlFKUaBVN6ANoFkdAlYEiUs4DLnV9lChoBmgJaA9DCFlrKLWXrnZAlIaUUpRoFU3oA2gWR0CVgRZcs189dX2UKGgGaAloD0MIMdP2ryy/dkCUhpRSlGgVTegDaBZHQJWMNbB42TB1fZQoaAZoCWgPQwhZpIl3QOV2QJSGlFKUaBVN6ANoFkdAlYwpyp71I3V9lChoBmgJaA9DCDtUU5J1snZAlIaUUpRoFU3oA2gWR0CVlp9X9zfadX2UKGgGaAloD0MIr5emCPDBdkCUhpRSlGgVTegDaBZHQJWWk2DQJHB1fZQoaAZoCWgPQwh1kUJZOLh2QJSGlFKUaBVN6ANoFkdAlZ2DhUBGQXV9lChoBmgJaA9DCJhr0QK0v3ZAlIaUUpRoFU3oA2gWR0CVnXeRgZ0kdX2UKGgGaAloD0MIRQ4RN+ffdkCUhpRSlGgVTegDaBZHQJWo6Bf8dgh1fZQoaAZoCWgPQwj8471qZeR2QJSGlFKUaBVN6ANoFkdAlajcan7523V9lChoBmgJaA9DCN5VD5hHlnZAlIaUUpRoFU3oA2gWR0CVtBx3FDOUdX2UKGgGaAloD0MIGsHG9e+rdkCUhpRSlGgVTegDaBZHQJW0EIppeu51fZQoaAZoCWgPQwjdYROZ+at2QJSGlFKUaBVN6ANoFkdAlcErmdRR/HV9lChoBmgJaA9DCJ+Sc2KP63ZAlIaUUpRoFU3oA2gWR0CVwR/gBLf2dX2UKGgGaAloD0MIdEAS9u3ldkCUhpRSlGgVTegDaBZHQJXOhb9qDbt1fZQoaAZoCWgPQwgs19tmqsp2QJSGlFKUaBVN6ANoFkdAlc55w84ginV9lChoBmgJaA9DCK6gaYkV93ZAlIaUUpRoFU3oA2gWR0CV2FFuejEfdX2UKGgGaAloD0MI2xg74WXbdkCUhpRSlGgVTegDaBZHQJXYRWn0kGB1fZQoaAZoCWgPQwhfJ/Vlqbt2QJSGlFKUaBVN6ANoFkdAlftC8jAzpHV9lChoBmgJaA9DCKX5Y1qbjnZAlIaUUpRoFU3oA2gWR0CV+zeEZiuudX2UKGgGaAloD0MIqwg3GVW5dkCUhpRSlGgVTegDaBZHQJYFWxUvPC51fZQoaAZoCWgPQwgPRYE+0et2QJSGlFKUaBVN6ANoFkdAlgVPH5rP+nV9lChoBmgJaA9DCChEwCFUj3ZAlIaUUpRoFU3oA2gWR0CWD82dNFjNdX2UKGgGaAloD0MIejTVk7ncdkCUhpRSlGgVTegDaBZHQJYPwfzSThZ1fZQoaAZoCWgPQwi1U3O5Qal2QJSGlFKUaBVN6ANoFkdAlhmjcVQAMnV9lChoBmgJaA9DCK7UsyBU1XZAlIaUUpRoFU3oA2gWR0CWGZeFL39KdX2UKGgGaAloD0MIibK3lPPSdkCUhpRSlGgVTegDaBZHQJYkCQCCBf91fZQoaAZoCWgPQwh/TdaoB7t2QJSGlFKUaBVN6ANoFkdAliP8/UvwmXV9lChoBmgJaA9DCGAF+G5z1nZAlIaUUpRoFU3oA2gWR0CWLkDCP6sRdX2UKGgGaAloD0MIMuauJeS/dkCUhpRSlGgVTegDaBZHQJYuNMrVe8h1fZQoaAZoCWgPQwgKSzyg7L12QJSGlFKUaBVN6ANoFkdAljgEQ04zanV9lChoBmgJaA9DCFIOZhPgzXZAlIaUUpRoFU3oA2gWR0CWN/hBqsU7dX2UKGgGaAloD0MIaAQb13/tdkCUhpRSlGgVTegDaBZHQJZDhnezlcR1fZQoaAZoCWgPQwiSXWkZadh2QJSGlFKUaBVN6ANoFkdAlkN6nR9gGHV9lChoBmgJaA9DCIUF9wPe63ZAlIaUUpRoFU3oA2gWR0CWTQZFocrBdX2UKGgGaAloD0MI58jKL0O1dkCUhpRSlGgVTegDaBZHQJZM+naWX1J1fZQoaAZoCWgPQwieXb714Yl2QJSGlFKUaBVN6ANoFkdAllbfVy3kP3V9lChoBmgJaA9DCIgQV87es3ZAlIaUUpRoFU3oA2gWR0CWVtNRFZxJdX2UKGgGaAloD0MI4jrGFZetdkCUhpRSlGgVTegDaBZHQJZgl3HJcPh1fZQoaAZoCWgPQwji5H6Hoqh2QJSGlFKUaBVN6ANoFkdAlmCLbQC0W3V9lChoBmgJaA9DCLQh/8wgw3ZAlIaUUpRoFU3oA2gWR0CWalhoM8YAdX2UKGgGaAloD0MIoDL+fQaldkCUhpRSlGgVTegDaBZHQJZqTQE6kqN1fZQoaAZoCWgPQwgkK78MxuF2QJSGlFKUaBVN6ANoFkdAlnUmQwK0D3V9lChoBmgJaA9DCIUKDi/IjHZAlIaUUpRoFU3oA2gWR0CWdRqH446wdX2UKGgGaAloD0MIN+FemXe3dkCUhpRSlGgVTegDaBZHQJZ/5wwTM7l1fZQoaAZoCWgPQwiCAu/kk6h2QJSGlFKUaBVN6ANoFkdAln/bKA8SwnV9lChoBmgJaA9DCD/FceAVyHZAlIaUUpRoFU3oA2gWR0CWiWBUaQ3hdX2UKGgGaAloD0MIDHkEN5LDdkCUhpRSlGgVTegDaBZHQJaJVEtuk1x1fZQoaAZoCWgPQwio/6z5saB2QJSGlFKUaBVN6ANoFkdAlpPdDUmUn3V9lChoBmgJaA9DCOcYkL1exXZAlIaUUpRoFU3oA2gWR0CWk9EM9bHIdX2UKGgGaAloD0MIHZCEfbvHdkCUhpRSlGgVTegDaBZHQJaeFrJr+Hd1fZQoaAZoCWgPQwj75v7qMaV2QJSGlFKUaBVN6ANoFkdAlp4K5f+junV9lChoBmgJaA9DCCi2gqYlCHdAlIaUUpRoFU3oA2gWR0CWqTtvXK8tdX2UKGgGaAloD0MIAkUsYljNdkCUhpRSlGgVTegDaBZHQJapL5rP+n91fZQoaAZoCWgPQwjOGyeFOcl2QJSGlFKUaBVN6ANoFkdAlrN51FH8THV9lChoBmgJaA9DCLQEGQEV1XZAlIaUUpRoFU3oA2gWR0CWs24A0bcXdX2UKGgGaAloD0MIGqIKfwb4dkCUhpRSlGgVTegDaBZHQJa8fEzfrKN1fZQoaAZoCWgPQwjtm/urh6p2QJSGlFKUaBVN6ANoFkdAlrxwP/aQFXV9lChoBmgJaA9DCNHMk2sKu3ZAlIaUUpRoFU3oA2gWR0CWxprUb1h9dX2UKGgGaAloD0MITkF+NrLvdkCUhpRSlGgVTegDaBZHQJbGjt+kP+Z1fZQoaAZoCWgPQwi7K7tgsNN2QJSGlFKUaBVN6ANoFkdAltChNucc2nV9lChoBmgJaA9DCC8UsB3MpXZAlIaUUpRoFU3oA2gWR0CW0JVgQYk3dX2UKGgGaAloD0MIJa34hoK2dkCUhpRSlGgVTegDaBZHQJbaKpYLb6B1fZQoaAZoCWgPQwiUNH9Mq9d2QJSGlFKUaBVN6ANoFkdAltoek1uR93V9lChoBmgJaA9DCG5uTE9Yy3ZAlIaUUpRoFU3oA2gWR0CW5GG9YfW+dX2UKGgGaAloD0MIBRkBFQ69dkCUhpRSlGgVTegDaBZHQJbkVdhRZU11fZQoaAZoCWgPQwghy4KJv7l2QJSGlFKUaBVN6ANoFkdAlu2W5+Ytx3V9lChoBmgJaA9DCKMeotEdtnZAlIaUUpRoFU3oA2gWR0CW7Yr30wrUdWUu"
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 489,
|
87 |
+
"n_steps": 1024,
|
88 |
+
"gamma": 0.9999,
|
89 |
+
"gae_lambda": 0.95,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.0,
|
92 |
+
"max_grad_norm": 0.0,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"batch_size": 128,
|
95 |
+
"cg_max_steps": 25,
|
96 |
+
"cg_damping": 0.1,
|
97 |
+
"line_search_shrinking_factor": 0.8,
|
98 |
+
"line_search_max_iter": 10,
|
99 |
+
"target_kl": 0.01,
|
100 |
+
"n_critic_updates": 20,
|
101 |
+
"sub_sampling_factor": 1
|
102 |
+
}
|
trpo-Swimmer-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2bc73d6fcc45d904ba08026e212f7601d70936d09c42bfebb89ab4b98d18325
|
3 |
+
size 41729
|
trpo-Swimmer-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5cbc17ababd91d9d0ea9687e125e756372d504abc3c3c45b59978f5b70ddd163
|
3 |
+
size 43006
|
trpo-Swimmer-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
trpo-Swimmer-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e7057fad8e0259c0034703295a1b28a7126a9a4a40c65d53dad78c1d858190a
|
3 |
+
size 4662
|