akiFQCint commited on
Commit
5072705
·
1 Parent(s): 97f0a0f

update: capital of name

Browse files
Files changed (2) hide show
  1. README.md +3 -3
  2. README_JA.md +2 -2
README.md CHANGED
@@ -23,12 +23,12 @@ datasets:
23
 
24
  ---
25
 
26
- # Sarashina-embedding-v1-1b
27
 
28
  **[日本語のREADME/Japanese README](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/README_JA.md)**
29
 
30
 
31
- "Sarashina-embedding-v1-1b" is a Japanese text embedding model, based on the 1.2B-parameter Japansese LLM "Sarashina".
32
  We trained this model with multi-stage contrastive learning. We achieved the state-of-the-art average score in the average of 16 datasets in [JMTEB](https://huggingface.co/datasets/sbintuitions/JMTEB)(Japanese Massive Text Embedding Benchmark).
33
 
34
  This model maps sentences & paragraphs to a 1792-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
@@ -95,7 +95,7 @@ print(similarities.shape)
95
 
96
  ## Training
97
 
98
- "Sarashina-embedding-v1-1b" is created through the following two-stage learning process:
99
 
100
  ### Stage 1: Weakly-supervised Learning
101
 
 
23
 
24
  ---
25
 
26
+ # Sarashina-Embedding-v1-1B
27
 
28
  **[日本語のREADME/Japanese README](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/README_JA.md)**
29
 
30
 
31
+ "Sarashina-Embedding-v1-1B" is a Japanese text embedding model, based on the 1.2B-parameter Japansese LLM "Sarashina".
32
  We trained this model with multi-stage contrastive learning. We achieved the state-of-the-art average score in the average of 16 datasets in [JMTEB](https://huggingface.co/datasets/sbintuitions/JMTEB)(Japanese Massive Text Embedding Benchmark).
33
 
34
  This model maps sentences & paragraphs to a 1792-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
 
95
 
96
  ## Training
97
 
98
+ "Sarashina-Embedding-v1-1B" is created through the following two-stage learning process:
99
 
100
  ### Stage 1: Weakly-supervised Learning
101
 
README_JA.md CHANGED
@@ -20,7 +20,7 @@ datasets:
20
  - SkelterLabsInc/JaQuAD
21
  ---
22
 
23
- # Sarashina-embedding-v1-1b
24
 
25
  「Sarashina-embedding-v1-1b」は、1.2Bパラメータの日本語LLM「Sarashina」をベースにした日本語テキスト埋め込みモデルです。
26
 
@@ -89,7 +89,7 @@ print(similarities.shape)
89
 
90
  ## 学習
91
 
92
- "Sarashina-embedding-v1-1b"は、以下の2段階の学習ステージによって行われています。
93
 
94
  ### Stage 1: 弱教師あり学習
95
 
 
20
  - SkelterLabsInc/JaQuAD
21
  ---
22
 
23
+ # Sarashina-Embedding-v1-1B
24
 
25
  「Sarashina-embedding-v1-1b」は、1.2Bパラメータの日本語LLM「Sarashina」をベースにした日本語テキスト埋め込みモデルです。
26
 
 
89
 
90
  ## 学習
91
 
92
+ "Sarashina-Embedding-v1-1B"は、以下の2段階の学習ステージによって行われています。
93
 
94
  ### Stage 1: 弱教師あり学習
95