File size: 4,733 Bytes
d13178a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- f1
model-index:
- name: 7-classifier-finetuned-padchest
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: F1
type: f1
value: 0.7449020840597932
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 7-classifier-finetuned-padchest
This model is a fine-tuned version of [nickmuchi/vit-finetuned-chest-xray-pneumonia](https://huggingface.co/nickmuchi/vit-finetuned-chest-xray-pneumonia) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7844
- F1: 0.7449
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.0948 | 1.0 | 18 | 1.9801 | 0.1856 |
| 1.916 | 2.0 | 36 | 1.7571 | 0.3242 |
| 1.6873 | 3.0 | 54 | 1.5333 | 0.4149 |
| 1.4576 | 4.0 | 72 | 1.3515 | 0.4656 |
| 1.2824 | 5.0 | 90 | 1.2288 | 0.4936 |
| 1.2004 | 6.0 | 108 | 1.1050 | 0.5462 |
| 1.1264 | 7.0 | 126 | 1.0643 | 0.5713 |
| 1.0149 | 8.0 | 144 | 1.0612 | 0.5718 |
| 0.9839 | 9.0 | 162 | 0.9897 | 0.6266 |
| 0.9001 | 10.0 | 180 | 0.9542 | 0.6710 |
| 0.9093 | 11.0 | 198 | 0.8993 | 0.6811 |
| 0.8824 | 12.0 | 216 | 0.8877 | 0.7018 |
| 0.8237 | 13.0 | 234 | 0.8970 | 0.7071 |
| 0.8446 | 14.0 | 252 | 0.8619 | 0.7084 |
| 0.7766 | 15.0 | 270 | 0.8271 | 0.7331 |
| 0.7405 | 16.0 | 288 | 0.8516 | 0.7237 |
| 0.7672 | 17.0 | 306 | 0.8036 | 0.7223 |
| 0.7149 | 18.0 | 324 | 0.8188 | 0.7186 |
| 0.7 | 19.0 | 342 | 0.8391 | 0.7274 |
| 0.7011 | 20.0 | 360 | 0.7922 | 0.7424 |
| 0.695 | 21.0 | 378 | 0.8065 | 0.7394 |
| 0.6655 | 22.0 | 396 | 0.7783 | 0.7473 |
| 0.6377 | 23.0 | 414 | 0.7977 | 0.7296 |
| 0.6884 | 24.0 | 432 | 0.7724 | 0.7387 |
| 0.614 | 25.0 | 450 | 0.8372 | 0.7351 |
| 0.6008 | 26.0 | 468 | 0.8229 | 0.7277 |
| 0.6402 | 27.0 | 486 | 0.7958 | 0.7300 |
| 0.592 | 28.0 | 504 | 0.8222 | 0.7264 |
| 0.5774 | 29.0 | 522 | 0.7613 | 0.7511 |
| 0.584 | 30.0 | 540 | 0.7866 | 0.7377 |
| 0.558 | 31.0 | 558 | 0.8298 | 0.7351 |
| 0.5871 | 32.0 | 576 | 0.7727 | 0.7494 |
| 0.5608 | 33.0 | 594 | 0.7753 | 0.7695 |
| 0.5385 | 34.0 | 612 | 0.7585 | 0.7575 |
| 0.5461 | 35.0 | 630 | 0.7664 | 0.7521 |
| 0.506 | 36.0 | 648 | 0.7624 | 0.7581 |
| 0.5132 | 37.0 | 666 | 0.7914 | 0.7347 |
| 0.5083 | 38.0 | 684 | 0.7913 | 0.7425 |
| 0.5042 | 39.0 | 702 | 0.7704 | 0.7556 |
| 0.4539 | 40.0 | 720 | 0.7590 | 0.7578 |
| 0.4714 | 41.0 | 738 | 0.7912 | 0.7503 |
| 0.4681 | 42.0 | 756 | 0.7838 | 0.7420 |
| 0.4482 | 43.0 | 774 | 0.7781 | 0.7345 |
| 0.4535 | 44.0 | 792 | 0.7823 | 0.7415 |
| 0.4284 | 45.0 | 810 | 0.8104 | 0.7449 |
| 0.436 | 46.0 | 828 | 0.7829 | 0.7421 |
| 0.4526 | 47.0 | 846 | 0.7932 | 0.7567 |
| 0.4672 | 48.0 | 864 | 0.7827 | 0.7411 |
| 0.4171 | 49.0 | 882 | 0.7835 | 0.7447 |
| 0.4126 | 50.0 | 900 | 0.7844 | 0.7449 |
### Framework versions
- Transformers 4.28.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.18.0
- Tokenizers 0.13.3
|