--- license: apache-2.0 language: - en metrics: - accuracy pipeline_tag: image-text-to-text base_model: - apple/OpenELM-270M-Instruct - facebook/dinov2-small --- # Introduction We use the powerful [TinyLLaVA Factory](https://github.com/TinyLLaVA/TinyLLaVA_Factory) to create a super small image-text-to-text model with only 296M params. The goal is to make it possible to run LLaVA models on edge devices (with few gigabytes of memory). For LLM and vision tower, we choose [OpenELM-270M-Instruct](apple/OpenELM-270M-Instruct) and [facebook/dinov2-small](facebook/dinov2-small), respectively. # Result [POPE](https://tinyllava-factory.readthedocs.io/en/latest/Evaluation.html#pope): | Category | # Samples | TP | FP | TN | FN | Accuracy | Precision | Recall | F1 Score | Yes Ratio | |-------------|------------|------|-----|------|-----|----------|-----------|--------|----------|-----------| | Adversarial | 3000 | 1264 | 575 | 925 | 236 | 0.7297 | 0.6873 | 0.8427 | 0.7571 | 0.613 | | Popular | 3000 | 1264 | 301 | 1199 | 236 | 0.8210 | 0.8077 | 0.8427 | 0.8248 | 0.5217 | | Random | 2910 | 1264 | 290 | 1120 | 236 | 0.8192 | 0.8134 | 0.8427 | 0.8278 | 0.5340 | [TEXTVQA](https://tinyllava-factory.readthedocs.io/en/latest/Evaluation.html#textvqa) Samples 5000, Accuracy 27% [SCIENCEQA](https://tinyllava-factory.readthedocs.io/en/latest/Evaluation.html#scienceqa) Samples 4241, Correct: 1725, Accuracy: 40.64%, IMG-Accuracy: 36.54% [MMMU](https://tinyllava-factory.readthedocs.io/en/latest/Evaluation.html#mmmu) | Category | # Samples | Accuracy | |---------------------------------|-----------|----------| | Overall | 900 | 0.273 | | Overall-Art and Design | 120 | 0.233 | | Art | 30 | 0.233 | | Art Theory | 30 | 0.167 | | Design | 30 | 0.367 | | Music | 30 | 0.167 | | Overall-Business | 150 | 0.293 | | Accounting | 30 | 0.367 | | Economics | 30 | 0.467 | | Finance | 30 | 0.200 | | Management | 30 | 0.233 | | Marketing | 30 | 0.200 | | Overall-Science | 150 | 0.273 | | Biology | 30 | 0.267 | | Chemistry | 30 | 0.100 | | Geography | 30 | 0.200 | | Math | 30 | 0.433 | | Physics | 30 | 0.367 | | Overall-Health and Medicine | 150 | 0.293 | | Basic Medical Science | 30 | 0.333 | | Clinical Medicine | 30 | 0.200 | | Diagnostics and Laboratory Med. | 30 | 0.233 | | Pharmacy | 30 | 0.333 | | Public Health | 30 | 0.367 | | Overall-Humanities and Soc. Sci.| 120 | 0.267 | | History | 30 | 0.333 | | Literature | 30 | 0.300 | | Sociology | 30 | 0.133 | | Psychology | 30 | 0.300 | | Overall-Tech and Engineering | 210 | 0.271 | | Agriculture | 30 | 0.200 | | Architecture and Engineering | 30 | 0.267 | | Computer Science | 30 | 0.333 | | Electronics | 30 | 0.267 | | Energy and Power | 30 | 0.333 | | Materials | 30 | 0.267 | | Mechanical Engineering | 30 | 0.233 |