scfengv commited on
Commit
2aca745
·
verified ·
1 Parent(s): 33ae159

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -51
README.md CHANGED
@@ -56,29 +56,28 @@ This modelcard aims to be a base template for new models. It has been generated
56
 
57
  [More Information Needed]
58
 
59
- ### Out-of-Scope Use
60
-
61
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
-
63
- [More Information Needed]
64
-
65
- ## Bias, Risks, and Limitations
66
-
67
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
-
69
- [More Information Needed]
70
-
71
- ### Recommendations
72
 
73
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
74
 
75
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
76
 
77
- ## How to Get Started with the Model
 
 
78
 
79
- Use the code below to get started with the model.
 
 
 
80
 
81
- [More Information Needed]
 
 
82
 
83
  ## Training Details
84
 
@@ -90,7 +89,6 @@ Use the code below to get started with the model.
90
 
91
  ### Training Procedure
92
 
93
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
 
95
  #### Preprocessing [optional]
96
 
@@ -99,7 +97,13 @@ Use the code below to get started with the model.
99
 
100
  #### Training Hyperparameters
101
 
102
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
 
 
 
103
 
104
  #### Speeds, Sizes, Times [optional]
105
 
@@ -133,7 +137,9 @@ Use the code below to get started with the model.
133
 
134
  ### Results
135
 
136
- [More Information Needed]
 
 
137
 
138
  #### Summary
139
 
@@ -145,18 +151,6 @@ Use the code below to get started with the model.
145
 
146
  [More Information Needed]
147
 
148
- ## Environmental Impact
149
-
150
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
-
152
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
-
154
- - **Hardware Type:** [More Information Needed]
155
- - **Hours used:** [More Information Needed]
156
- - **Cloud Provider:** [More Information Needed]
157
- - **Compute Region:** [More Information Needed]
158
- - **Carbon Emitted:** [More Information Needed]
159
-
160
  ## Technical Specifications [optional]
161
 
162
  ### Model Architecture and Objective
@@ -175,24 +169,6 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
175
 
176
  [More Information Needed]
177
 
178
- ## Citation [optional]
179
-
180
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
-
182
- **BibTeX:**
183
-
184
- [More Information Needed]
185
-
186
- **APA:**
187
-
188
- [More Information Needed]
189
-
190
- ## Glossary [optional]
191
-
192
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
-
194
- [More Information Needed]
195
-
196
  ## More Information [optional]
197
 
198
  [More Information Needed]
 
56
 
57
  [More Information Needed]
58
 
59
+ ## How to Get Started with the Model
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
+ ```python
62
+ import torch
63
+ from transformers import BertForSequenceClassification, BertTokenizer
64
 
65
+ # Load model and tokenizer
66
+ model = BertForSequenceClassification.from_pretrained("scfengv/TVL_GeneralLayerClassifier")
67
+ tokenizer = BertTokenizer.from_pretrained("scfengv/TVL_GeneralLayerClassifier")
68
 
69
+ # Prepare your text
70
+ text = "Your text here"
71
+ inputs = tokenizer(text, return_tensors = "pt", padding = True, truncation = True, max_length = 512)
72
 
73
+ # Make prediction
74
+ with torch.no_grad():
75
+ outputs = model(**inputs)
76
+ predictions = torch.sigmoid(outputs.logits)
77
 
78
+ # Print predictions
79
+ print(predictions)
80
+ ```
81
 
82
  ## Training Details
83
 
 
89
 
90
  ### Training Procedure
91
 
 
92
 
93
  #### Preprocessing [optional]
94
 
 
97
 
98
  #### Training Hyperparameters
99
 
100
+
101
+ The model was trained using the following hyperparameters:
102
+
103
+ Learning rate: 1e-05
104
+ Batch size: 32
105
+ Number of epochs: 10
106
+ Optimizer: Adam
107
 
108
  #### Speeds, Sizes, Times [optional]
109
 
 
137
 
138
  ### Results
139
 
140
+ - Accuracy: 0.9592504607823059
141
+ - F1 Score (Micro): 0.9740588950133884
142
+ - F1 Score (Macro): 0.9757074189160264
143
 
144
  #### Summary
145
 
 
151
 
152
  [More Information Needed]
153
 
 
 
 
 
 
 
 
 
 
 
 
 
154
  ## Technical Specifications [optional]
155
 
156
  ### Model Architecture and Objective
 
169
 
170
  [More Information Needed]
171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
  ## More Information [optional]
173
 
174
  [More Information Needed]