Update README
Browse files
README.md
CHANGED
@@ -33,28 +33,86 @@ model-index:
|
|
33 |
type: F1 score (Macro)
|
34 |
value: 0.970818
|
35 |
---
|
36 |
-
# Model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
-
|
48 |
-
- **Language:** Chinese (Zh)
|
49 |
-
- **Finetuned from model:** [google-bert/bert-base-chinese](https://huggingface.co/google-bert/bert-base-chinese)
|
50 |
|
51 |
-
|
|
|
|
|
|
|
52 |
|
53 |
-
|
|
|
54 |
|
55 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
|
59 |
```python
|
60 |
import torch
|
@@ -76,7 +134,9 @@ with torch.no_grad():
|
|
76 |
print(predictions)
|
77 |
```
|
78 |
|
79 |
-
##
|
|
|
|
|
80 |
|
81 |
- **Hardware Type:** NVIDIA Quadro RTX8000
|
82 |
- **Library:** PyTorch
|
|
|
33 |
type: F1 score (Macro)
|
34 |
value: 0.970818
|
35 |
---
|
36 |
+
# Model Details of TVL_GeneralLayerClassifier
|
37 |
+
|
38 |
+
## Base Model
|
39 |
+
This model is fine-tuned from [google-bert/bert-base-chinese](https://huggingface.co/google-bert/bert-base-chinese).
|
40 |
+
|
41 |
+
## Model Architecture
|
42 |
+
- **Type**: BERT-based text classification model
|
43 |
+
- **Hidden Size**: 768
|
44 |
+
- **Number of Layers**: 12
|
45 |
+
- **Number of Attention Heads**: 12
|
46 |
+
- **Intermediate Size**: 3072
|
47 |
+
- **Max Sequence Length**: 512
|
48 |
+
- **Vocabulary Size**: 21,128
|
49 |
+
|
50 |
+
## Key Components
|
51 |
+
1. **Embeddings**
|
52 |
+
- Word Embeddings
|
53 |
+
- Position Embeddings
|
54 |
+
- Token Type Embeddings
|
55 |
+
- Layer Normalization
|
56 |
+
|
57 |
+
2. **Encoder**
|
58 |
+
- 12 layers of:
|
59 |
+
- Self-Attention Mechanism
|
60 |
+
- Intermediate Dense Layer
|
61 |
+
- Output Dense Layer
|
62 |
+
- Layer Normalization
|
63 |
+
|
64 |
+
3. **Pooler**
|
65 |
+
- Dense layer for sentence representation
|
66 |
+
|
67 |
+
4. **Classifier**
|
68 |
+
- Output layer with 4 classes
|
69 |
+
|
70 |
+
## Training Hyperparameters
|
71 |
|
72 |
+
The model was trained using the following hyperparameters:
|
73 |
|
74 |
+
```
|
75 |
+
Learning rate: 1e-05
|
76 |
+
Batch size: 32
|
77 |
+
Number of epochs: 10
|
78 |
+
Optimizer: Adam
|
79 |
+
Loss function: torch.nn.BCEWithLogitsLoss()
|
80 |
+
```
|
81 |
|
82 |
+
## Training Infrastructure
|
83 |
|
84 |
+
- **Hardware Type:** NVIDIA Quadro RTX8000
|
85 |
+
- **Library:** PyTorch
|
86 |
+
- **Hours used:** 2hr 56mins
|
87 |
+
|
88 |
+
## Model Parameters
|
89 |
+
- Total parameters: ~102M (estimated)
|
90 |
+
- All parameters are in 32-bit floating point (F32) format
|
91 |
+
|
92 |
+
## Input Processing
|
93 |
+
- Uses BERT tokenization
|
94 |
+
- Supports sequences up to 512 tokens
|
95 |
|
96 |
+
## Output
|
97 |
+
- 4-class multi-label classification
|
|
|
|
|
98 |
|
99 |
+
## Performance Metrics
|
100 |
+
- Accuracy score: 0.952902
|
101 |
+
- F1 score (Micro): 0.968717
|
102 |
+
- F1 score (Macro): 0.970818
|
103 |
|
104 |
+
## Training Dataset
|
105 |
+
This model was trained on the [scfengv/TVL-general-layer-dataset](https://huggingface.co/datasets/scfengv/TVL-general-layer-dataset).
|
106 |
|
107 |
+
## Testing Dataset
|
108 |
+
|
109 |
+
- [scfengv/TVL-general-layer-dataset](https://huggingface.co/datasets/scfengv/TVL-general-layer-dataset)
|
110 |
+
- validation
|
111 |
+
- Remove Emoji
|
112 |
+
- Emoji2Desc
|
113 |
+
- Remove Punctuation
|
114 |
|
115 |
+
## Usage
|
116 |
|
117 |
```python
|
118 |
import torch
|
|
|
134 |
print(predictions)
|
135 |
```
|
136 |
|
137 |
+
## Additional Notes
|
138 |
+
- This model is specifically designed for TVL general layer classification tasks.
|
139 |
+
- It's based on the Chinese BERT model, indicating it's optimized for Chinese text.
|
140 |
|
141 |
- **Hardware Type:** NVIDIA Quadro RTX8000
|
142 |
- **Library:** PyTorch
|