scfengv commited on
Commit
a7c29d5
1 Parent(s): 218054b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -30
README.md CHANGED
@@ -1,9 +1,11 @@
1
  ---
2
- license: apache-2.0
3
  language:
4
  - zh
5
  metrics:
6
  - accuracy
 
 
7
  base_model:
8
  - google-bert/bert-base-chinese
9
  pipeline_tag: text-classification
@@ -12,6 +14,24 @@ tags:
12
  datasets:
13
  - scfengv/TVL-general-layer-dataset
14
  library_name: adapter-transformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  ---
16
  # Model Card for Model ID
17
 
@@ -30,7 +50,7 @@ library_name: adapter-transformers
30
 
31
  ### Model Sources
32
 
33
- - **Repository:** [scfengv/NLP_DL-Topic-Modeling-for-TVL-livestream-comments](https://github.com/scfengv/NLP_DL-Topic-Modeling-for-TVL-livestream-comments)
34
 
35
  ## Model Inference Examples
36
 
@@ -43,16 +63,17 @@ python inference_example_3.py
43
 
44
  ## How to Get Started with the Model
45
 
 
 
46
  ```python
47
  import torch
48
  from transformers import BertForSequenceClassification, BertTokenizer
49
 
50
- # Load model and tokenizer
51
  model = BertForSequenceClassification.from_pretrained("scfengv/TVL_GeneralLayerClassifier")
52
  tokenizer = BertTokenizer.from_pretrained("scfengv/TVL_GeneralLayerClassifier")
53
 
54
  # Prepare your text
55
- text = "Your text here"
56
  inputs = tokenizer(text, return_tensors = "pt", padding = True, truncation = True, max_length = 512)
57
 
58
  # Make prediction
@@ -66,16 +87,16 @@ print(predictions)
66
 
67
  ## Training Details
68
 
 
 
 
 
69
  ### Training Data
70
 
71
- ### Training Procedure
72
-
73
-
74
- #### Preprocessing
75
-
76
-
77
- #### Training Hyperparameters
78
 
 
79
 
80
  The model was trained using the following hyperparameters:
81
 
@@ -84,29 +105,21 @@ Learning rate: 1e-05
84
  Batch size: 32
85
  Number of epochs: 10
86
  Optimizer: Adam
 
87
  ```
88
 
89
  ## Evaluation
90
 
91
- ### Results
92
-
93
- - Accuracy: 0.9592504607823059
94
- - F1 Score (Micro): 0.9740588950133884
95
- - F1 Score (Macro): 0.9757074189160264
96
-
97
- ## Technical Specifications
98
-
99
- ### Model Architecture and Objective
100
-
101
- [More Information Needed]
102
-
103
- ### Compute Infrastructure
104
-
105
- #### Hardware
106
 
107
- - NVIDIA Quadro RTX8000
 
 
 
 
108
 
109
- #### Software
110
 
111
- - PyTorch
112
- - HuggingFace
 
 
1
  ---
2
+ license: mit
3
  language:
4
  - zh
5
  metrics:
6
  - accuracy
7
+ - f1 (macro)
8
+ - f1 (micro)
9
  base_model:
10
  - google-bert/bert-base-chinese
11
  pipeline_tag: text-classification
 
14
  datasets:
15
  - scfengv/TVL-general-layer-dataset
16
  library_name: adapter-transformers
17
+ model-index:
18
+ - name: scfengv/TVL_GeneralLayerClassifier
19
+ results:
20
+ - task:
21
+ type: multi-label text-classification
22
+ dataset:
23
+ name: scfengv/TVL-general-layer-dataset
24
+ type: scfengv/TVL-general-layer-dataset
25
+ metrics:
26
+ - name: Accuracy
27
+ type: Accuracy
28
+ value: 0.952902
29
+ - name: F1 score (Micro)
30
+ type: F1 score (Micro)
31
+ value: 0.968717
32
+ - name: F1 score (Macro)
33
+ type: F1 score (Macro)
34
+ value: 0.970818
35
  ---
36
  # Model Card for Model ID
37
 
 
50
 
51
  ### Model Sources
52
 
53
+ - **Repository:** [scfengv/NLP-Topic-Modeling-for-TVL-livestream-comments](https://github.com/scfengv/NLP-Topic-Modeling-for-TVL-livestream-comments)
54
 
55
  ## Model Inference Examples
56
 
 
63
 
64
  ## How to Get Started with the Model
65
 
66
+ Use the code below to get started with the model.
67
+
68
  ```python
69
  import torch
70
  from transformers import BertForSequenceClassification, BertTokenizer
71
 
 
72
  model = BertForSequenceClassification.from_pretrained("scfengv/TVL_GeneralLayerClassifier")
73
  tokenizer = BertTokenizer.from_pretrained("scfengv/TVL_GeneralLayerClassifier")
74
 
75
  # Prepare your text
76
+ text = "Your text here" ## Please refer to Dataset
77
  inputs = tokenizer(text, return_tensors = "pt", padding = True, truncation = True, max_length = 512)
78
 
79
  # Make prediction
 
87
 
88
  ## Training Details
89
 
90
+ - **Hardware Type:** NVIDIA Quadro RTX8000
91
+ - **Library:** PyTorch
92
+ - **Hours used:** 2hr 13mins
93
+ -
94
  ### Training Data
95
 
96
+ - [scfengv/TVL-general-layer-dataset](https://huggingface.co/datasets/scfengv/TVL-general-layer-dataset)
97
+ - train
 
 
 
 
 
98
 
99
+ ### Training Hyperparameters
100
 
101
  The model was trained using the following hyperparameters:
102
 
 
105
  Batch size: 32
106
  Number of epochs: 10
107
  Optimizer: Adam
108
+ Loss function: torch.nn.BCEWithLogitsLoss()
109
  ```
110
 
111
  ## Evaluation
112
 
113
+ ### Testing Data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
 
115
+ - [scfengv/TVL-general-layer-dataset](https://huggingface.co/datasets/scfengv/TVL-general-layer-dataset)
116
+ - validation
117
+ - Remove Emoji
118
+ - Emoji2Desc
119
+ - Remove Punctuation
120
 
121
+ ### Results (validation)
122
 
123
+ - Accuracy: 0.952902
124
+ - F1 Score (Micro): 0.968717
125
+ - F1 Score (Macro): 0.970818