schrilax commited on
Commit
859b2f7
1 Parent(s): be49527

initial commit

Browse files
PPO-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bad017768d370d7b01cf750d52dde20ef7236d92ce54b69df0ada0a7176916b
3
+ size 147218
PPO-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
PPO-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5df862a5e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5df862a670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5df862a700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5df862a790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5df862a820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5df862a8b0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5df862a940>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5df862a9d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5df862aa60>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5df862aaf0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5df862ab80>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f5df861fe40>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670558133618186396,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0sRj32qDC6YKfku5k43DeuUTS7na83twAAgD8AAIA/AMB3OlyPNLpgoZQ6QCtrtWK9azuQ0qu5AACAPwAAgD/mLwu9XMMPutO8uzQRwy0uS3Gpuqc8GrQAAIA/AACAP9oss71ch3i6TpKXPAEUXjT5ICu7enBeMwAAgD8AAIA/Gt3TPVVnNz+uaC++jl88viFZ2zs7j/G8AAAAAAAAAAAAYKY7PCVrPnrpyj19jIO+wDoAukaJRj0AAAAAAAAAALNJjr0U4IS6ghs+OzCcRDhspLa546SluAAAgD8AAIA/ZipxPClQe7ofvyM89LM1tsCd1DpmrCa1AACAPwAAgD8AZDO+7BX8PprFwT2ABoq+06nlvL5nNLwAAAAAAAAAAEAni732RDq6kyDfO62VlrUIvVg7YNuPtAAAgD8AAAAA5uMxvVzzKrpIIW25JkhktMpnsTq5BY04AACAPwAAgD8zKIO8e7akungu/zsPOhQ25FM+umanADUAAIA/AACAPxqpNL0KKAq7TRVaPJcYjjyBd8Y72Ot1vQAAgD8AAIA/ABJrvT26DjqK35I5gD6JNOvCgbsLr7O4AACAPwAAgD/NYmI9jyYFujbwcrtX1uy2lDi3ugrZjToAAIA/AACAP2YU9LxeSP49g7TcPU4VDL6noos9FcervQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIf6SIDKvMZUCUhpRSlIwBbJRN6AOMAXSUR0Cj6CQfhddFdX2UKGgGaAloD0MIJhk5C/vdYkCUhpRSlGgVTegDaBZHQKP0V42S+xp1fZQoaAZoCWgPQwhPWriswlFbQJSGlFKUaBVN6ANoFkdAo/lXuuzQeHV9lChoBmgJaA9DCK/RcqAHJ2JAlIaUUpRoFU3oA2gWR0Cj+7fhMrVfdX2UKGgGaAloD0MIu2JGePtsY0CUhpRSlGgVTegDaBZHQKP7+sJ6Y3N1fZQoaAZoCWgPQwgT1VsDW6lfQJSGlFKUaBVN6ANoFkdAo/zNgtvn83V9lChoBmgJaA9DCNcv2A3bIWFAlIaUUpRoFU3oA2gWR0CkADPTPSlWdX2UKGgGaAloD0MISPje36BTYkCUhpRSlGgVTegDaBZHQKQBLzwMH8l1fZQoaAZoCWgPQwjrc7UV+zBeQJSGlFKUaBVN6ANoFkdApAI/FrEcbXV9lChoBmgJaA9DCA9j0t9LkltAlIaUUpRoFU3oA2gWR0CkBLtJnQIEdX2UKGgGaAloD0MITpgwmpUtPkCUhpRSlGgVTQwBaBZHQKQGeu6ErXl1fZQoaAZoCWgPQwjdzr7yINpbQJSGlFKUaBVN6ANoFkdApApAiNbTt3V9lChoBmgJaA9DCJoklpS74mFAlIaUUpRoFU3oA2gWR0CkDSqNQ0oCdX2UKGgGaAloD0MIy9WPTXIzZECUhpRSlGgVTegDaBZHQKQVoXYUWVN1fZQoaAZoCWgPQwgl6ZrJN15fQJSGlFKUaBVN6ANoFkdApBYKlN1yNnV9lChoBmgJaA9DCLqGGRrP/2FAlIaUUpRoFU3oA2gWR0CkGFbvXsgMdX2UKGgGaAloD0MIG9gqweKKXECUhpRSlGgVTegDaBZHQKQYvLwF1Sx1fZQoaAZoCWgPQwgmb4CZb3JgQJSGlFKUaBVN6ANoFkdApBt2alUIcHV9lChoBmgJaA9DCPziUpU20GVAlIaUUpRoFU3oA2gWR0CkHdINd7fIdX2UKGgGaAloD0MIkUjb+BO+YUCUhpRSlGgVTegDaBZHQKQsZnAZbY91fZQoaAZoCWgPQwibrie6rg5kQJSGlFKUaBVN6ANoFkdApC6Y4ZMtb3V9lChoBmgJaA9DCKZHUz0ZXGRAlIaUUpRoFU3oA2gWR0CkL49AgPmQdX2UKGgGaAloD0MIjSYXY+B9YUCUhpRSlGgVTegDaBZHQKQy2bXHzYp1fZQoaAZoCWgPQwjBcoQM5DlaQJSGlFKUaBVN6ANoFkdApDOvi704BHV9lChoBmgJaA9DCFjk1w+xkVpAlIaUUpRoFU3oA2gWR0CkNJP24/eMdX2UKGgGaAloD0MIyAxUxj8mYECUhpRSlGgVTegDaBZHQKQ23lLeyiV1fZQoaAZoCWgPQwgMIlLTLp9jQJSGlFKUaBVN6ANoFkdApDiXnbItDnV9lChoBmgJaA9DCL9H/fUKNFtAlIaUUpRoFU3oA2gWR0CkO8ZdGAkLdX2UKGgGaAloD0MIYRdFD3yYY0CUhpRSlGgVTegDaBZHQKQ+Re3x4IN1fZQoaAZoCWgPQwjImpFB7vdjQJSGlFKUaBVN6ANoFkdApEalC7btZ3V9lChoBmgJaA9DCJPGaB1VSF9AlIaUUpRoFU3oA2gWR0CkRwr5hz/7dX2UKGgGaAloD0MIz02bcZpRZECUhpRSlGgVTegDaBZHQKRJMcFQl8h1fZQoaAZoCWgPQwi++KI93u9hQJSGlFKUaBVN6ANoFkdApEmgNoakynV9lChoBmgJaA9DCAoRcAhVd11AlIaUUpRoFU3oA2gWR0CkTGAuyu6mdX2UKGgGaAloD0MIwLLSpBQKWUCUhpRSlGgVTegDaBZHQKROwp3os7N1fZQoaAZoCWgPQwh+w0SDFJRiQJSGlFKUaBVN6ANoFkdApF0eH31zyXV9lChoBmgJaA9DCCdLrfcbQ1tAlIaUUpRoFU3oA2gWR0CkX4J0fYBedX2UKGgGaAloD0MIU3b6QV1oWkCUhpRSlGgVTegDaBZHQKRgnhjvuw51fZQoaAZoCWgPQwippE5AE7JgQJSGlFKUaBVN6ANoFkdApGQ7pC8e0XV9lChoBmgJaA9DCJq0qbrHzmFAlIaUUpRoFU3oA2gWR0CkZRs36yjYdX2UKGgGaAloD0MIYJLKFHPMY0CUhpRSlGgVTegDaBZHQKRmFAmAskJ1fZQoaAZoCWgPQwi2hlJ7EeFgQJSGlFKUaBVN6ANoFkdApGiMpXp4bHV9lChoBmgJaA9DCEuwOJz52GNAlIaUUpRoFU3oA2gWR0CkalnXEqDsdX2UKGgGaAloD0MIR6ta0tGrZUCUhpRSlGgVTegDaBZHQKRuDylvZRN1fZQoaAZoCWgPQwgU7L/OTaFdQJSGlFKUaBVN6ANoFkdApHEipBHCoHV9lChoBmgJaA9DCFclkX0QuWBAlIaUUpRoFU3oA2gWR0CkfLMglnh9dX2UKGgGaAloD0MIritmhDeeYkCUhpRSlGgVTegDaBZHQKR9M2gnMMZ1fZQoaAZoCWgPQwhDyeTUzs5WQJSGlFKUaBVN6ANoFkdApIAlEPUaynV9lChoBmgJaA9DCNe+gF44rWVAlIaUUpRoFU3oA2gWR0CkgKc2rGR3dX2UKGgGaAloD0MIWYrkK4F/XECUhpRSlGgVTegDaBZHQKSDk2KEWZZ1fZQoaAZoCWgPQwgUWtb94xtkQJSGlFKUaBVN6ANoFkdApIWKhDgIhXV9lChoBmgJaA9DCN2adFsiA1VAlIaUUpRoFU3oA2gWR0Ckk9UF8ohIdX2UKGgGaAloD0MIYaWCiqpwYkCUhpRSlGgVTegDaBZHQKSV6brkbP11fZQoaAZoCWgPQwi2vd2SHIVjQJSGlFKUaBVN6ANoFkdApJbhNEgGKXV9lChoBmgJaA9DCBpR2ht8slxAlIaUUpRoFU3oA2gWR0CkmiJD/lySdX2UKGgGaAloD0MIfO4E+y8VZ0CUhpRSlGgVTegDaBZHQKSa8MTewcJ1fZQoaAZoCWgPQwicTx2rlI5cQJSGlFKUaBVN6ANoFkdApJvg8fV7QnV9lChoBmgJaA9DCK4QVmMJGF9AlIaUUpRoFU3oA2gWR0Ckngg4OtnxdX2UKGgGaAloD0MIZp/HKM86QECUhpRSlGgVTUMBaBZHQKSfdPUKArh1fZQoaAZoCWgPQwhNMQdBx2ljQJSGlFKUaBVN6ANoFkdApJ+wydnTRnV9lChoBmgJaA9DCD+qYb+nHWVAlIaUUpRoFU3oA2gWR0CkopI4+8oQdX2UKGgGaAloD0MIjGSPULP+YECUhpRSlGgVTegDaBZHQKSk0yMUAT91fZQoaAZoCWgPQwidoE0On2FhQJSGlFKUaBVN6ANoFkdApKu8z9CNTHV9lChoBmgJaA9DCAiT4uMTXGZAlIaUUpRoFU3oA2gWR0CkrBhZZB9kdX2UKGgGaAloD0MIZHWr56SCYUCUhpRSlGgVTegDaBZHQKSuGQ+UyHp1fZQoaAZoCWgPQwiorKbrCVRmQJSGlFKUaBVN6ANoFkdApK54A0bcXXV9lChoBmgJaA9DCDVeukmM92JAlIaUUpRoFU3oA2gWR0CksLrBbfP5dX2UKGgGaAloD0MIsMka9ZCiZECUhpRSlGgVTegDaBZHQKSyqp4KQaJ1fZQoaAZoCWgPQwgc0xOWeChiQJSGlFKUaBVN6ANoFkdApMKV3IMjNnV9lChoBmgJaA9DCBgkfVpFJ11AlIaUUpRoFU3oA2gWR0Ckw5CRwIdEdX2UKGgGaAloD0MIesa+ZGOzYkCUhpRSlGgVTegDaBZHQKTGuHwgDA91fZQoaAZoCWgPQwgHYtnMIeheQJSGlFKUaBVN6ANoFkdApMduAZsKs3V9lChoBmgJaA9DCGywcJJm3WZAlIaUUpRoFU3oA2gWR0CkyEA6U7jldX2UKGgGaAloD0MI9s5oq5K0XkCUhpRSlGgVTegDaBZHQKTKWSfUWmB1fZQoaAZoCWgPQwjdlV0wOAFiQJSGlFKUaBVN6ANoFkdApMufSc9W63V9lChoBmgJaA9DCJdvfVjvGWFAlIaUUpRoFU3oA2gWR0Cky9eI/JNkdX2UKGgGaAloD0MIzhd7L77mZUCUhpRSlGgVTegDaBZHQKTO00k4WDZ1fZQoaAZoCWgPQwjryfyj72NgQJSGlFKUaBVN6ANoFkdApND61G9YfXV9lChoBmgJaA9DCCDQmbSpvGRAlIaUUpRoFU3oA2gWR0Ck1/FwDNhWdX2UKGgGaAloD0MIsky/RDyhYUCUhpRSlGgVTegDaBZHQKTYSBhhH9Z1fZQoaAZoCWgPQwjxun7B7mJiQJSGlFKUaBVN6ANoFkdApNpO3WnTAnV9lChoBmgJaA9DCM5sV+gDsmJAlIaUUpRoFU3oA2gWR0Ck2rD5j6N3dX2UKGgGaAloD0MI9S7ej9tBX0CUhpRSlGgVTegDaBZHQKTdCYa5wwV1fZQoaAZoCWgPQwjo+dNGdRphQJSGlFKUaBVN6ANoFkdApN8KYVqN63V9lChoBmgJaA9DCDHT9q+slmFAlIaUUpRoFU3oA2gWR0Ck8FpxWDHwdX2UKGgGaAloD0MIkQn4NZJBYkCUhpRSlGgVTegDaBZHQKTxUJC0F8p1fZQoaAZoCWgPQwijW6/pwY1iQJSGlFKUaBVN6ANoFkdApPRm1lXii3V9lChoBmgJaA9DCFBz8iITcmVAlIaUUpRoFU3oA2gWR0Ck9SxnFo+OdX2UKGgGaAloD0MIec4WEFoIZUCUhpRSlGgVTegDaBZHQKT2FvKlpGp1fZQoaAZoCWgPQwh3oblOo3JlQJSGlFKUaBVN6ANoFkdApPhgwPAfuHV9lChoBmgJaA9DCNVCyeRULmBAlIaUUpRoFU3oA2gWR0Ck+cv0h/y5dX2UKGgGaAloD0MI5IOezarNY0CUhpRSlGgVTegDaBZHQKT6DF6Rhc91fZQoaAZoCWgPQwgtIR/0bDpiQJSGlFKUaBVN6ANoFkdApP0LdnCfpXV9lChoBmgJaA9DCLXEymjk4ltAlIaUUpRoFU3oA2gWR0Ck/2588cMmdX2UKGgGaAloD0MIYFrUJzkbYECUhpRSlGgVTegDaBZHQKUHfp48lol1fZQoaAZoCWgPQwj44ov2+HZkQJSGlFKUaBVN6ANoFkdApQffHvMKTnV9lChoBmgJaA9DCA360tuf411AlIaUUpRoFU3oA2gWR0ClCfT1schldX2UKGgGaAloD0MIp60RwTihXkCUhpRSlGgVTegDaBZHQKUKW1pCa7V1fZQoaAZoCWgPQwgKZ7eWSfFlQJSGlFKUaBVN6ANoFkdApQ0gzHjp93V9lChoBmgJaA9DCNicg2dC+FtAlIaUUpRoFU3oA2gWR0ClD4X531SPdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
PPO-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab0c830f591f7fc8b1c6faca68db7376802afad36ed12e4f5c23e92cac250a4f
3
+ size 87929
PPO-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4aa28ec580e9328bd6faebbac2456dccfe291ef01de8d482dff73bee1b9090db
3
+ size 43201
PPO-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 238.46 +/- 22.84
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5df862a5e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5df862a670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5df862a700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5df862a790>", "_build": "<function ActorCriticPolicy._build at 0x7f5df862a820>", "forward": "<function ActorCriticPolicy.forward at 0x7f5df862a8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5df862a940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5df862a9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5df862aa60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5df862aaf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5df862ab80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5df861fe40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670558133618186396, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0sRj32qDC6YKfku5k43DeuUTS7na83twAAgD8AAIA/AMB3OlyPNLpgoZQ6QCtrtWK9azuQ0qu5AACAPwAAgD/mLwu9XMMPutO8uzQRwy0uS3Gpuqc8GrQAAIA/AACAP9oss71ch3i6TpKXPAEUXjT5ICu7enBeMwAAgD8AAIA/Gt3TPVVnNz+uaC++jl88viFZ2zs7j/G8AAAAAAAAAAAAYKY7PCVrPnrpyj19jIO+wDoAukaJRj0AAAAAAAAAALNJjr0U4IS6ghs+OzCcRDhspLa546SluAAAgD8AAIA/ZipxPClQe7ofvyM89LM1tsCd1DpmrCa1AACAPwAAgD8AZDO+7BX8PprFwT2ABoq+06nlvL5nNLwAAAAAAAAAAEAni732RDq6kyDfO62VlrUIvVg7YNuPtAAAgD8AAAAA5uMxvVzzKrpIIW25JkhktMpnsTq5BY04AACAPwAAgD8zKIO8e7akungu/zsPOhQ25FM+umanADUAAIA/AACAPxqpNL0KKAq7TRVaPJcYjjyBd8Y72Ot1vQAAgD8AAIA/ABJrvT26DjqK35I5gD6JNOvCgbsLr7O4AACAPwAAgD/NYmI9jyYFujbwcrtX1uy2lDi3ugrZjToAAIA/AACAP2YU9LxeSP49g7TcPU4VDL6noos9FcervQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIf6SIDKvMZUCUhpRSlIwBbJRN6AOMAXSUR0Cj6CQfhddFdX2UKGgGaAloD0MIJhk5C/vdYkCUhpRSlGgVTegDaBZHQKP0V42S+xp1fZQoaAZoCWgPQwhPWriswlFbQJSGlFKUaBVN6ANoFkdAo/lXuuzQeHV9lChoBmgJaA9DCK/RcqAHJ2JAlIaUUpRoFU3oA2gWR0Cj+7fhMrVfdX2UKGgGaAloD0MIu2JGePtsY0CUhpRSlGgVTegDaBZHQKP7+sJ6Y3N1fZQoaAZoCWgPQwgT1VsDW6lfQJSGlFKUaBVN6ANoFkdAo/zNgtvn83V9lChoBmgJaA9DCNcv2A3bIWFAlIaUUpRoFU3oA2gWR0CkADPTPSlWdX2UKGgGaAloD0MISPje36BTYkCUhpRSlGgVTegDaBZHQKQBLzwMH8l1fZQoaAZoCWgPQwjrc7UV+zBeQJSGlFKUaBVN6ANoFkdApAI/FrEcbXV9lChoBmgJaA9DCA9j0t9LkltAlIaUUpRoFU3oA2gWR0CkBLtJnQIEdX2UKGgGaAloD0MITpgwmpUtPkCUhpRSlGgVTQwBaBZHQKQGeu6ErXl1fZQoaAZoCWgPQwjdzr7yINpbQJSGlFKUaBVN6ANoFkdApApAiNbTt3V9lChoBmgJaA9DCJoklpS74mFAlIaUUpRoFU3oA2gWR0CkDSqNQ0oCdX2UKGgGaAloD0MIy9WPTXIzZECUhpRSlGgVTegDaBZHQKQVoXYUWVN1fZQoaAZoCWgPQwgl6ZrJN15fQJSGlFKUaBVN6ANoFkdApBYKlN1yNnV9lChoBmgJaA9DCLqGGRrP/2FAlIaUUpRoFU3oA2gWR0CkGFbvXsgMdX2UKGgGaAloD0MIG9gqweKKXECUhpRSlGgVTegDaBZHQKQYvLwF1Sx1fZQoaAZoCWgPQwgmb4CZb3JgQJSGlFKUaBVN6ANoFkdApBt2alUIcHV9lChoBmgJaA9DCPziUpU20GVAlIaUUpRoFU3oA2gWR0CkHdINd7fIdX2UKGgGaAloD0MIkUjb+BO+YUCUhpRSlGgVTegDaBZHQKQsZnAZbY91fZQoaAZoCWgPQwibrie6rg5kQJSGlFKUaBVN6ANoFkdApC6Y4ZMtb3V9lChoBmgJaA9DCKZHUz0ZXGRAlIaUUpRoFU3oA2gWR0CkL49AgPmQdX2UKGgGaAloD0MIjSYXY+B9YUCUhpRSlGgVTegDaBZHQKQy2bXHzYp1fZQoaAZoCWgPQwjBcoQM5DlaQJSGlFKUaBVN6ANoFkdApDOvi704BHV9lChoBmgJaA9DCFjk1w+xkVpAlIaUUpRoFU3oA2gWR0CkNJP24/eMdX2UKGgGaAloD0MIyAxUxj8mYECUhpRSlGgVTegDaBZHQKQ23lLeyiV1fZQoaAZoCWgPQwgMIlLTLp9jQJSGlFKUaBVN6ANoFkdApDiXnbItDnV9lChoBmgJaA9DCL9H/fUKNFtAlIaUUpRoFU3oA2gWR0CkO8ZdGAkLdX2UKGgGaAloD0MIYRdFD3yYY0CUhpRSlGgVTegDaBZHQKQ+Re3x4IN1fZQoaAZoCWgPQwjImpFB7vdjQJSGlFKUaBVN6ANoFkdApEalC7btZ3V9lChoBmgJaA9DCJPGaB1VSF9AlIaUUpRoFU3oA2gWR0CkRwr5hz/7dX2UKGgGaAloD0MIz02bcZpRZECUhpRSlGgVTegDaBZHQKRJMcFQl8h1fZQoaAZoCWgPQwi++KI93u9hQJSGlFKUaBVN6ANoFkdApEmgNoakynV9lChoBmgJaA9DCAoRcAhVd11AlIaUUpRoFU3oA2gWR0CkTGAuyu6mdX2UKGgGaAloD0MIwLLSpBQKWUCUhpRSlGgVTegDaBZHQKROwp3os7N1fZQoaAZoCWgPQwh+w0SDFJRiQJSGlFKUaBVN6ANoFkdApF0eH31zyXV9lChoBmgJaA9DCCdLrfcbQ1tAlIaUUpRoFU3oA2gWR0CkX4J0fYBedX2UKGgGaAloD0MIU3b6QV1oWkCUhpRSlGgVTegDaBZHQKRgnhjvuw51fZQoaAZoCWgPQwippE5AE7JgQJSGlFKUaBVN6ANoFkdApGQ7pC8e0XV9lChoBmgJaA9DCJq0qbrHzmFAlIaUUpRoFU3oA2gWR0CkZRs36yjYdX2UKGgGaAloD0MIYJLKFHPMY0CUhpRSlGgVTegDaBZHQKRmFAmAskJ1fZQoaAZoCWgPQwi2hlJ7EeFgQJSGlFKUaBVN6ANoFkdApGiMpXp4bHV9lChoBmgJaA9DCEuwOJz52GNAlIaUUpRoFU3oA2gWR0CkalnXEqDsdX2UKGgGaAloD0MIR6ta0tGrZUCUhpRSlGgVTegDaBZHQKRuDylvZRN1fZQoaAZoCWgPQwgU7L/OTaFdQJSGlFKUaBVN6ANoFkdApHEipBHCoHV9lChoBmgJaA9DCFclkX0QuWBAlIaUUpRoFU3oA2gWR0CkfLMglnh9dX2UKGgGaAloD0MIritmhDeeYkCUhpRSlGgVTegDaBZHQKR9M2gnMMZ1fZQoaAZoCWgPQwhDyeTUzs5WQJSGlFKUaBVN6ANoFkdApIAlEPUaynV9lChoBmgJaA9DCNe+gF44rWVAlIaUUpRoFU3oA2gWR0CkgKc2rGR3dX2UKGgGaAloD0MIWYrkK4F/XECUhpRSlGgVTegDaBZHQKSDk2KEWZZ1fZQoaAZoCWgPQwgUWtb94xtkQJSGlFKUaBVN6ANoFkdApIWKhDgIhXV9lChoBmgJaA9DCN2adFsiA1VAlIaUUpRoFU3oA2gWR0Ckk9UF8ohIdX2UKGgGaAloD0MIYaWCiqpwYkCUhpRSlGgVTegDaBZHQKSV6brkbP11fZQoaAZoCWgPQwi2vd2SHIVjQJSGlFKUaBVN6ANoFkdApJbhNEgGKXV9lChoBmgJaA9DCBpR2ht8slxAlIaUUpRoFU3oA2gWR0CkmiJD/lySdX2UKGgGaAloD0MIfO4E+y8VZ0CUhpRSlGgVTegDaBZHQKSa8MTewcJ1fZQoaAZoCWgPQwicTx2rlI5cQJSGlFKUaBVN6ANoFkdApJvg8fV7QnV9lChoBmgJaA9DCK4QVmMJGF9AlIaUUpRoFU3oA2gWR0Ckngg4OtnxdX2UKGgGaAloD0MIZp/HKM86QECUhpRSlGgVTUMBaBZHQKSfdPUKArh1fZQoaAZoCWgPQwhNMQdBx2ljQJSGlFKUaBVN6ANoFkdApJ+wydnTRnV9lChoBmgJaA9DCD+qYb+nHWVAlIaUUpRoFU3oA2gWR0CkopI4+8oQdX2UKGgGaAloD0MIjGSPULP+YECUhpRSlGgVTegDaBZHQKSk0yMUAT91fZQoaAZoCWgPQwidoE0On2FhQJSGlFKUaBVN6ANoFkdApKu8z9CNTHV9lChoBmgJaA9DCAiT4uMTXGZAlIaUUpRoFU3oA2gWR0CkrBhZZB9kdX2UKGgGaAloD0MIZHWr56SCYUCUhpRSlGgVTegDaBZHQKSuGQ+UyHp1fZQoaAZoCWgPQwiorKbrCVRmQJSGlFKUaBVN6ANoFkdApK54A0bcXXV9lChoBmgJaA9DCDVeukmM92JAlIaUUpRoFU3oA2gWR0CksLrBbfP5dX2UKGgGaAloD0MIsMka9ZCiZECUhpRSlGgVTegDaBZHQKSyqp4KQaJ1fZQoaAZoCWgPQwgc0xOWeChiQJSGlFKUaBVN6ANoFkdApMKV3IMjNnV9lChoBmgJaA9DCBgkfVpFJ11AlIaUUpRoFU3oA2gWR0Ckw5CRwIdEdX2UKGgGaAloD0MIesa+ZGOzYkCUhpRSlGgVTegDaBZHQKTGuHwgDA91fZQoaAZoCWgPQwgHYtnMIeheQJSGlFKUaBVN6ANoFkdApMduAZsKs3V9lChoBmgJaA9DCGywcJJm3WZAlIaUUpRoFU3oA2gWR0CkyEA6U7jldX2UKGgGaAloD0MI9s5oq5K0XkCUhpRSlGgVTegDaBZHQKTKWSfUWmB1fZQoaAZoCWgPQwjdlV0wOAFiQJSGlFKUaBVN6ANoFkdApMufSc9W63V9lChoBmgJaA9DCJdvfVjvGWFAlIaUUpRoFU3oA2gWR0Cky9eI/JNkdX2UKGgGaAloD0MIzhd7L77mZUCUhpRSlGgVTegDaBZHQKTO00k4WDZ1fZQoaAZoCWgPQwjryfyj72NgQJSGlFKUaBVN6ANoFkdApND61G9YfXV9lChoBmgJaA9DCCDQmbSpvGRAlIaUUpRoFU3oA2gWR0Ck1/FwDNhWdX2UKGgGaAloD0MIsky/RDyhYUCUhpRSlGgVTegDaBZHQKTYSBhhH9Z1fZQoaAZoCWgPQwjxun7B7mJiQJSGlFKUaBVN6ANoFkdApNpO3WnTAnV9lChoBmgJaA9DCM5sV+gDsmJAlIaUUpRoFU3oA2gWR0Ck2rD5j6N3dX2UKGgGaAloD0MI9S7ej9tBX0CUhpRSlGgVTegDaBZHQKTdCYa5wwV1fZQoaAZoCWgPQwjo+dNGdRphQJSGlFKUaBVN6ANoFkdApN8KYVqN63V9lChoBmgJaA9DCDHT9q+slmFAlIaUUpRoFU3oA2gWR0Ck8FpxWDHwdX2UKGgGaAloD0MIkQn4NZJBYkCUhpRSlGgVTegDaBZHQKTxUJC0F8p1fZQoaAZoCWgPQwijW6/pwY1iQJSGlFKUaBVN6ANoFkdApPRm1lXii3V9lChoBmgJaA9DCFBz8iITcmVAlIaUUpRoFU3oA2gWR0Ck9SxnFo+OdX2UKGgGaAloD0MIec4WEFoIZUCUhpRSlGgVTegDaBZHQKT2FvKlpGp1fZQoaAZoCWgPQwh3oblOo3JlQJSGlFKUaBVN6ANoFkdApPhgwPAfuHV9lChoBmgJaA9DCNVCyeRULmBAlIaUUpRoFU3oA2gWR0Ck+cv0h/y5dX2UKGgGaAloD0MI5IOezarNY0CUhpRSlGgVTegDaBZHQKT6DF6Rhc91fZQoaAZoCWgPQwgtIR/0bDpiQJSGlFKUaBVN6ANoFkdApP0LdnCfpXV9lChoBmgJaA9DCLXEymjk4ltAlIaUUpRoFU3oA2gWR0Ck/2588cMmdX2UKGgGaAloD0MIYFrUJzkbYECUhpRSlGgVTegDaBZHQKUHfp48lol1fZQoaAZoCWgPQwj44ov2+HZkQJSGlFKUaBVN6ANoFkdApQffHvMKTnV9lChoBmgJaA9DCA360tuf411AlIaUUpRoFU3oA2gWR0ClCfT1schldX2UKGgGaAloD0MIp60RwTihXkCUhpRSlGgVTegDaBZHQKUKW1pCa7V1fZQoaAZoCWgPQwgKZ7eWSfFlQJSGlFKUaBVN6ANoFkdApQ0gzHjp93V9lChoBmgJaA9DCNicg2dC+FtAlIaUUpRoFU3oA2gWR0ClD4X531SPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (207 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 238.45555675007807, "std_reward": 22.84260232172128, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-09T04:48:00.209230"}