--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9210439921208142 - name: Recall type: recall value: 0.9442948502187816 - name: F1 type: f1 value: 0.9325245138773475 - name: Accuracy type: accuracy value: 0.9857538117383882 --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0561 - Precision: 0.9210 - Recall: 0.9443 - F1: 0.9325 - Accuracy: 0.9858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 439 | 0.0758 | 0.8831 | 0.9192 | 0.9008 | 0.9789 | | 0.1901 | 2.0 | 878 | 0.0572 | 0.9105 | 0.9399 | 0.9250 | 0.9846 | | 0.0483 | 3.0 | 1317 | 0.0561 | 0.9210 | 0.9443 | 0.9325 | 0.9858 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0a0+29c30b1 - Datasets 2.14.5 - Tokenizers 0.14.1