sciarrilli
commited on
Commit
·
1d2fba3
1
Parent(s):
b058d5f
update model card README.md
Browse files
README.md
CHANGED
@@ -21,16 +21,16 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Precision
|
23 |
type: precision
|
24 |
-
value: 0.
|
25 |
- name: Recall
|
26 |
type: recall
|
27 |
-
value: 0.
|
28 |
- name: F1
|
29 |
type: f1
|
30 |
-
value: 0.
|
31 |
- name: Accuracy
|
32 |
type: accuracy
|
33 |
-
value: 0.
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -40,11 +40,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
40 |
|
41 |
This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the jnlpba dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
-
- Loss: 0.
|
44 |
-
- Precision: 0.
|
45 |
-
- Recall: 0.
|
46 |
-
- F1: 0.
|
47 |
-
- Accuracy: 0.
|
48 |
|
49 |
## Model description
|
50 |
|
@@ -75,9 +75,9 @@ The following hyperparameters were used during training:
|
|
75 |
|
76 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
77 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
|
82 |
|
83 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Precision
|
23 |
type: precision
|
24 |
+
value: 0.894958702110781
|
25 |
- name: Recall
|
26 |
type: recall
|
27 |
+
value: 0.9286290713063688
|
28 |
- name: F1
|
29 |
type: f1
|
30 |
+
value: 0.9114830451416668
|
31 |
- name: Accuracy
|
32 |
type: accuracy
|
33 |
+
value: 0.9602011115815866
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
40 |
|
41 |
This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the jnlpba dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 0.1253
|
44 |
+
- Precision: 0.8950
|
45 |
+
- Recall: 0.9286
|
46 |
+
- F1: 0.9115
|
47 |
+
- Accuracy: 0.9602
|
48 |
|
49 |
## Model description
|
50 |
|
|
|
75 |
|
76 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
77 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
78 |
+
| 0.2267 | 1.0 | 1858 | 0.1822 | 0.8389 | 0.8841 | 0.8609 | 0.9383 |
|
79 |
+
| 0.1495 | 2.0 | 3716 | 0.1439 | 0.8750 | 0.9166 | 0.8953 | 0.9536 |
|
80 |
+
| 0.1141 | 3.0 | 5574 | 0.1253 | 0.8950 | 0.9286 | 0.9115 | 0.9602 |
|
81 |
|
82 |
|
83 |
### Framework versions
|