sciarrilli
commited on
Commit
·
57d16e5
1
Parent(s):
be91527
update model card README.md
Browse files
README.md
CHANGED
@@ -21,16 +21,16 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Precision
|
23 |
type: precision
|
24 |
-
value: 0.
|
25 |
- name: Recall
|
26 |
type: recall
|
27 |
-
value: 0.
|
28 |
- name: F1
|
29 |
type: f1
|
30 |
-
value: 0.
|
31 |
- name: Accuracy
|
32 |
type: accuracy
|
33 |
-
value: 0.
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -40,15 +40,15 @@ should probably proofread and complete it, then remove this comment. -->
|
|
40 |
|
41 |
This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the jnlpba dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
-
- Loss: 0.
|
44 |
-
- Precision: 0.
|
45 |
-
- Recall: 0.
|
46 |
-
- F1: 0.
|
47 |
-
- Accuracy: 0.
|
48 |
|
49 |
## Model description
|
50 |
|
51 |
-
|
52 |
|
53 |
## Intended uses & limitations
|
54 |
|
@@ -75,14 +75,14 @@ The following hyperparameters were used during training:
|
|
75 |
|
76 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
77 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
|
82 |
|
83 |
### Framework versions
|
84 |
|
85 |
-
- Transformers 4.
|
86 |
- Pytorch 1.9.1+cu102
|
87 |
-
- Datasets 1.
|
88 |
- Tokenizers 0.10.3
|
|
|
21 |
metrics:
|
22 |
- name: Precision
|
23 |
type: precision
|
24 |
+
value: 0.7191307944386116
|
25 |
- name: Recall
|
26 |
type: recall
|
27 |
+
value: 0.82492700729927
|
28 |
- name: F1
|
29 |
type: f1
|
30 |
+
value: 0.7684044126395947
|
31 |
- name: Accuracy
|
32 |
type: accuracy
|
33 |
+
value: 0.9044411982318681
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
40 |
|
41 |
This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the jnlpba dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 0.3965
|
44 |
+
- Precision: 0.7191
|
45 |
+
- Recall: 0.8249
|
46 |
+
- F1: 0.7684
|
47 |
+
- Accuracy: 0.9044
|
48 |
|
49 |
## Model description
|
50 |
|
51 |
+
More information needed
|
52 |
|
53 |
## Intended uses & limitations
|
54 |
|
|
|
75 |
|
76 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
77 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
78 |
+
| 0.2038 | 1.0 | 2319 | 0.3123 | 0.7116 | 0.8319 | 0.7670 | 0.9043 |
|
79 |
+
| 0.1334 | 2.0 | 4638 | 0.3466 | 0.7148 | 0.8259 | 0.7663 | 0.9039 |
|
80 |
+
| 0.095 | 3.0 | 6957 | 0.3965 | 0.7191 | 0.8249 | 0.7684 | 0.9044 |
|
81 |
|
82 |
|
83 |
### Framework versions
|
84 |
|
85 |
+
- Transformers 4.11.3
|
86 |
- Pytorch 1.9.1+cu102
|
87 |
+
- Datasets 1.13.2
|
88 |
- Tokenizers 0.10.3
|