--- tags: - generated_from_trainer datasets: - jnlpba metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-base-cased-v1.2-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: jnlpba type: jnlpba args: jnlpba metrics: - name: Precision type: precision value: 0.7193353093271111 - name: Recall type: recall value: 0.8325912408759124 - name: F1 type: f1 value: 0.7718307000033834 - name: Accuracy type: accuracy value: 0.9057438991228902 --- # biobert-base-cased-v1.2-finetuned-ner This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the jnlpba dataset. It achieves the following results on the evaluation set: - Loss: 0.3674 - Precision: 0.7193 - Recall: 0.8326 - F1: 0.7718 - Accuracy: 0.9057 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2584 | 1.0 | 1160 | 0.2930 | 0.7052 | 0.8246 | 0.7603 | 0.9019 | | 0.1966 | 2.0 | 2320 | 0.3023 | 0.7175 | 0.8247 | 0.7674 | 0.9056 | | 0.1577 | 3.0 | 3480 | 0.3171 | 0.7165 | 0.8228 | 0.7659 | 0.9047 | | 0.131 | 4.0 | 4640 | 0.3413 | 0.7201 | 0.8292 | 0.7708 | 0.9054 | | 0.1073 | 5.0 | 5800 | 0.3674 | 0.7193 | 0.8326 | 0.7718 | 0.9057 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu102 - Datasets 1.13.2 - Tokenizers 0.10.3