--- tags: - generated_from_trainer datasets: - jnlpba metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-base-cased-v1.2-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: jnlpba type: jnlpba args: jnlpba metrics: - name: Precision type: precision value: 0.8948080842655547 - name: Recall type: recall value: 0.9282417121275703 - name: F1 type: f1 value: 0.9112183219652858 - name: Accuracy type: accuracy value: 0.9601644367242017 --- # biobert-base-cased-v1.2-finetuned-ner This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the jnlpba dataset. It achieves the following results on the evaluation set: - Loss: 0.1265 - Precision: 0.8948 - Recall: 0.9282 - F1: 0.9112 - Accuracy: 0.9602 ## Model description BioBERT fine-tuned on JNLPBA dataset for NER in Biomedical. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2278 | 1.0 | 1858 | 0.1826 | 0.8415 | 0.8815 | 0.8610 | 0.9384 | | 0.151 | 2.0 | 3716 | 0.1443 | 0.8756 | 0.9162 | 0.8955 | 0.9530 | | 0.1157 | 3.0 | 5574 | 0.1265 | 0.8948 | 0.9282 | 0.9112 | 0.9602 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3