File size: 6,164 Bytes
42ec3e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_file: model.pkl
widget:
structuredData:
x0:
- 19.89
- 12.89
- 17.14
x1:
- 20.26
- 13.12
- 16.4
x10:
- 0.5079
- 0.1532
- 1.046
x11:
- 0.8737
- 0.469
- 0.976
x12:
- 3.654
- 1.115
- 7.276
x13:
- 59.7
- 12.68
- 111.4
x14:
- 0.005089
- 0.004731
- 0.008029
x15:
- 0.02303
- 0.01345
- 0.03799
x16:
- 0.03052
- 0.01652
- 0.03732
x17:
- 0.01178
- 0.005905
- 0.02397
x18:
- 0.01057
- 0.01619
- 0.02308
x19:
- 0.003391
- 0.002081
- 0.007444
x2:
- 130.5
- 81.89
- 116.0
x20:
- 23.73
- 13.62
- 22.25
x21:
- 25.23
- 15.54
- 21.4
x22:
- 160.5
- 87.4
- 152.4
x23:
- 1646.0
- 577.0
- 1461.0
x24:
- 0.1417
- 0.09616
- 0.1545
x25:
- 0.3309
- 0.1147
- 0.3949
x26:
- 0.4185
- 0.1186
- 0.3853
x27:
- 0.1613
- 0.05366
- 0.255
x28:
- 0.2549
- 0.2309
- 0.4066
x29:
- 0.09136
- 0.06915
- 0.1059
x3:
- 1214.0
- 515.9
- 912.7
x4:
- 0.1037
- 0.06955
- 0.1186
x5:
- 0.131
- 0.03729
- 0.2276
x6:
- 0.1411
- 0.0226
- 0.2229
x7:
- 0.09431
- 0.01171
- 0.1401
x8:
- 0.1802
- 0.1337
- 0.304
x9:
- 0.06188
- 0.05581
- 0.07413
---
# Model description
This is a Decision Tree Classifier trained on breast cancer dataset and pruned with CCP.
## Intended uses & limitations
This model is trained for educational purposes.
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|--------------------------|---------|
| ccp_alpha | 0.0 |
| class_weight | |
| criterion | gini |
| max_depth | |
| max_features | |
| max_leaf_nodes | |
| min_impurity_decrease | 0.0 |
| min_impurity_split | |
| min_samples_leaf | 1 |
| min_samples_split | 2 |
| min_weight_fraction_leaf | 0.0 |
| random_state | 0 |
| splitter | best |
</details>
### Model Plot
The model plot is below.
<style>div.sk-top-container {color: black;background-color: white;}div.sk-toggleable {background-color: white;}label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.2em 0.3em;box-sizing: border-box;text-align: center;}div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}div.sk-estimator {font-family: monospace;background-color: #f0f8ff;margin: 0.25em 0.25em;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;}div.sk-estimator:hover {background-color: #d4ebff;}div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;}div.sk-item {z-index: 1;}div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}div.sk-parallel-item:only-child::after {width: 0;}div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0.2em;box-sizing: border-box;padding-bottom: 0.1em;background-color: white;position: relative;}div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}div.sk-label-container {position: relative;z-index: 2;text-align: center;}div.sk-container {display: inline-block;position: relative;}</style><div class="sk-top-container"><div class="sk-container"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="2f21b6bf-6c69-42c6-8cc3-1024ae9f4a92" type="checkbox" checked><label class="sk-toggleable__label" for="2f21b6bf-6c69-42c6-8cc3-1024ae9f4a92">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(random_state=0)</pre></div></div></div></div></div>
## Evaluation Results
You can find the details about evaluation process and the evaluation results.
| Metric | Value |
|----------|----------|
| accuracy | 0.937063 |
| f1 score | 0.937063 |
# How to Get Started with the Model
Use the code below to get started with the model.
```python
import joblib
import json
import pandas as pd
clf = joblib.load(model.pkl)
with open("config.json") as f:
config = json.load(f)
clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
```
# Additional Content
## Feature Importances
![Feature Importances](feature_importances.png)
## Tree Splits
![Tree Splits](tree.png)
## Confusion Matrix
![Confusion Matrix](confusion_matrix.png) |