|
--- |
|
library_name: sklearn |
|
tags: |
|
- sklearn |
|
- skops |
|
- tabular-classification |
|
model_file: model.pkl |
|
widget: |
|
structuredData: |
|
x0: |
|
- 19.89 |
|
- 12.89 |
|
- 17.14 |
|
x1: |
|
- 20.26 |
|
- 13.12 |
|
- 16.4 |
|
x10: |
|
- 0.5079 |
|
- 0.1532 |
|
- 1.046 |
|
x11: |
|
- 0.8737 |
|
- 0.469 |
|
- 0.976 |
|
x12: |
|
- 3.654 |
|
- 1.115 |
|
- 7.276 |
|
x13: |
|
- 59.7 |
|
- 12.68 |
|
- 111.4 |
|
x14: |
|
- 0.005089 |
|
- 0.004731 |
|
- 0.008029 |
|
x15: |
|
- 0.02303 |
|
- 0.01345 |
|
- 0.03799 |
|
x16: |
|
- 0.03052 |
|
- 0.01652 |
|
- 0.03732 |
|
x17: |
|
- 0.01178 |
|
- 0.005905 |
|
- 0.02397 |
|
x18: |
|
- 0.01057 |
|
- 0.01619 |
|
- 0.02308 |
|
x19: |
|
- 0.003391 |
|
- 0.002081 |
|
- 0.007444 |
|
x2: |
|
- 130.5 |
|
- 81.89 |
|
- 116.0 |
|
x20: |
|
- 23.73 |
|
- 13.62 |
|
- 22.25 |
|
x21: |
|
- 25.23 |
|
- 15.54 |
|
- 21.4 |
|
x22: |
|
- 160.5 |
|
- 87.4 |
|
- 152.4 |
|
x23: |
|
- 1646.0 |
|
- 577.0 |
|
- 1461.0 |
|
x24: |
|
- 0.1417 |
|
- 0.09616 |
|
- 0.1545 |
|
x25: |
|
- 0.3309 |
|
- 0.1147 |
|
- 0.3949 |
|
x26: |
|
- 0.4185 |
|
- 0.1186 |
|
- 0.3853 |
|
x27: |
|
- 0.1613 |
|
- 0.05366 |
|
- 0.255 |
|
x28: |
|
- 0.2549 |
|
- 0.2309 |
|
- 0.4066 |
|
x29: |
|
- 0.09136 |
|
- 0.06915 |
|
- 0.1059 |
|
x3: |
|
- 1214.0 |
|
- 515.9 |
|
- 912.7 |
|
x4: |
|
- 0.1037 |
|
- 0.06955 |
|
- 0.1186 |
|
x5: |
|
- 0.131 |
|
- 0.03729 |
|
- 0.2276 |
|
x6: |
|
- 0.1411 |
|
- 0.0226 |
|
- 0.2229 |
|
x7: |
|
- 0.09431 |
|
- 0.01171 |
|
- 0.1401 |
|
x8: |
|
- 0.1802 |
|
- 0.1337 |
|
- 0.304 |
|
x9: |
|
- 0.06188 |
|
- 0.05581 |
|
- 0.07413 |
|
--- |
|
|
|
# Model description |
|
|
|
This is a Decision Tree Classifier trained on breast cancer dataset and pruned with CCP. |
|
|
|
## Intended uses & limitations |
|
|
|
This model is trained for educational purposes. |
|
|
|
## Training Procedure |
|
|
|
### Hyperparameters |
|
|
|
The model is trained with below hyperparameters. |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
| Hyperparameter | Value | |
|
|--------------------------|---------| |
|
| ccp_alpha | 0.0 | |
|
| class_weight | | |
|
| criterion | gini | |
|
| max_depth | | |
|
| max_features | | |
|
| max_leaf_nodes | | |
|
| min_impurity_decrease | 0.0 | |
|
| min_impurity_split | | |
|
| min_samples_leaf | 1 | |
|
| min_samples_split | 2 | |
|
| min_weight_fraction_leaf | 0.0 | |
|
| random_state | 0 | |
|
| splitter | best | |
|
|
|
</details> |
|
|
|
### Model Plot |
|
|
|
The model plot is below. |
|
|
|
<style>div.sk-top-container {color: black;background-color: white;}div.sk-toggleable {background-color: white;}label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.2em 0.3em;box-sizing: border-box;text-align: center;}div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}div.sk-estimator {font-family: monospace;background-color: #f0f8ff;margin: 0.25em 0.25em;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;}div.sk-estimator:hover {background-color: #d4ebff;}div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;}div.sk-item {z-index: 1;}div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}div.sk-parallel-item:only-child::after {width: 0;}div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0.2em;box-sizing: border-box;padding-bottom: 0.1em;background-color: white;position: relative;}div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}div.sk-label-container {position: relative;z-index: 2;text-align: center;}div.sk-container {display: inline-block;position: relative;}</style><div class="sk-top-container"><div class="sk-container"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="2f21b6bf-6c69-42c6-8cc3-1024ae9f4a92" type="checkbox" checked><label class="sk-toggleable__label" for="2f21b6bf-6c69-42c6-8cc3-1024ae9f4a92">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(random_state=0)</pre></div></div></div></div></div> |
|
|
|
## Evaluation Results |
|
|
|
You can find the details about evaluation process and the evaluation results. |
|
|
|
|
|
|
|
| Metric | Value | |
|
|----------|----------| |
|
| accuracy | 0.937063 | |
|
| f1 score | 0.937063 | |
|
|
|
# How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
```python |
|
import joblib |
|
import json |
|
import pandas as pd |
|
clf = joblib.load(model.pkl) |
|
with open("config.json") as f: |
|
config = json.load(f) |
|
clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"])) |
|
``` |
|
|
|
|
|
# Additional Content |
|
|
|
## Feature Importances |
|
|
|
![Feature Importances](feature_importances.png) |
|
|
|
## Tree Splits |
|
|
|
![Tree Splits](tree.png) |
|
|
|
## Confusion Matrix |
|
|
|
![Confusion Matrix](confusion_matrix.png) |