merve's picture
merve HF staff
Removed empty sections
4680ce9
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_file: model.pkl
widget:
structuredData:
x0:
- 19.89
- 12.89
- 17.14
x1:
- 20.26
- 13.12
- 16.4
x10:
- 0.5079
- 0.1532
- 1.046
x11:
- 0.8737
- 0.469
- 0.976
x12:
- 3.654
- 1.115
- 7.276
x13:
- 59.7
- 12.68
- 111.4
x14:
- 0.005089
- 0.004731
- 0.008029
x15:
- 0.02303
- 0.01345
- 0.03799
x16:
- 0.03052
- 0.01652
- 0.03732
x17:
- 0.01178
- 0.005905
- 0.02397
x18:
- 0.01057
- 0.01619
- 0.02308
x19:
- 0.003391
- 0.002081
- 0.007444
x2:
- 130.5
- 81.89
- 116.0
x20:
- 23.73
- 13.62
- 22.25
x21:
- 25.23
- 15.54
- 21.4
x22:
- 160.5
- 87.4
- 152.4
x23:
- 1646.0
- 577.0
- 1461.0
x24:
- 0.1417
- 0.09616
- 0.1545
x25:
- 0.3309
- 0.1147
- 0.3949
x26:
- 0.4185
- 0.1186
- 0.3853
x27:
- 0.1613
- 0.05366
- 0.255
x28:
- 0.2549
- 0.2309
- 0.4066
x29:
- 0.09136
- 0.06915
- 0.1059
x3:
- 1214.0
- 515.9
- 912.7
x4:
- 0.1037
- 0.06955
- 0.1186
x5:
- 0.131
- 0.03729
- 0.2276
x6:
- 0.1411
- 0.0226
- 0.2229
x7:
- 0.09431
- 0.01171
- 0.1401
x8:
- 0.1802
- 0.1337
- 0.304
x9:
- 0.06188
- 0.05581
- 0.07413
---
# Model description
This is a Decision Tree Classifier trained on breast cancer dataset and pruned with CCP.
## Intended uses & limitations
This model is trained for educational purposes.
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|--------------------------|---------|
| ccp_alpha | 0.0 |
| class_weight | |
| criterion | gini |
| max_depth | |
| max_features | |
| max_leaf_nodes | |
| min_impurity_decrease | 0.0 |
| min_impurity_split | |
| min_samples_leaf | 1 |
| min_samples_split | 2 |
| min_weight_fraction_leaf | 0.0 |
| random_state | 0 |
| splitter | best |
</details>
### Model Plot
The model plot is below.
<style>div.sk-top-container {color: black;background-color: white;}div.sk-toggleable {background-color: white;}label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.2em 0.3em;box-sizing: border-box;text-align: center;}div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}div.sk-estimator {font-family: monospace;background-color: #f0f8ff;margin: 0.25em 0.25em;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;}div.sk-estimator:hover {background-color: #d4ebff;}div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;}div.sk-item {z-index: 1;}div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}div.sk-parallel-item:only-child::after {width: 0;}div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0.2em;box-sizing: border-box;padding-bottom: 0.1em;background-color: white;position: relative;}div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}div.sk-label-container {position: relative;z-index: 2;text-align: center;}div.sk-container {display: inline-block;position: relative;}</style><div class="sk-top-container"><div class="sk-container"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="2f21b6bf-6c69-42c6-8cc3-1024ae9f4a92" type="checkbox" checked><label class="sk-toggleable__label" for="2f21b6bf-6c69-42c6-8cc3-1024ae9f4a92">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(random_state=0)</pre></div></div></div></div></div>
## Evaluation Results
You can find the details about evaluation process and the evaluation results.
| Metric | Value |
|----------|----------|
| accuracy | 0.937063 |
| f1 score | 0.937063 |
# How to Get Started with the Model
Use the code below to get started with the model.
```python
import joblib
import json
import pandas as pd
clf = joblib.load(model.pkl)
with open("config.json") as f:
config = json.load(f)
clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
```
# Additional Content
## Feature Importances
![Feature Importances](feature_importances.png)
## Tree Splits
![Tree Splits](tree.png)
## Confusion Matrix
![Confusion Matrix](confusion_matrix.png)