File size: 1,640 Bytes
aa325f2
 
097198c
aa325f2
097198c
aa325f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
097198c
aa325f2
097198c
 
aa325f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: gemma
base_model: google/gemma-2-2b
tags:
- easylm
- trl
- reward-trainer
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: easylm-helpsteer-rm-gemma-2-2b
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# easylm-helpsteer-rm-gemma-2-2b

This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9694
- Accuracy: 0.6265

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.5003        | 0.3115 | 500  | 2.7140          | 0.6294   |
| 0.3939        | 0.6231 | 1000 | 3.3430          | 0.65     |
| 0.065         | 0.9346 | 1500 | 2.9740          | 0.6324   |


### Framework versions

- Transformers 4.43.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1