Pushing PPO-LunarLander-v2 model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-RL.zip +3 -0
- ppo-LunarLander-v2-RL/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-RL/data +94 -0
- ppo-LunarLander-v2-RL/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-RL/policy.pth +3 -0
- ppo-LunarLander-v2-RL/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-RL/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 280.48 +/- 16.71
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb2d1362040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb2d13620d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb2d1362160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb2d13621f0>", "_build": "<function ActorCriticPolicy._build at 0x7fb2d1362280>", "forward": "<function ActorCriticPolicy.forward at 0x7fb2d1362310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb2d13623a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb2d1362430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb2d13624c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb2d1362550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb2d13625e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb2d135b780>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673071755963980674, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABoo7tcgyW6DpjPupPvtrXtTGa6BXrtOQAAgD8AAIA/mr3XPFx7P7paBIe5pQ6MtJKoRjsOjZ84AACAPwAAgD9mDA4919Izuwtt2jseA4882m5VvMt9dj0AAIA/AACAP5rWl7xI6Yu6ISqwOcoyMbZe/Qq7isXLuAAAgD8AAIA/ADGzvLjp7LtGB8m866M+O3GHaz2PJSC8AACAPwAAgD/Nffo8ymWjPuPwHz2/Kpu+Yk1hPUB9fj0AAAAAAAAAAJpOo7wUhJK6fqo2syzQ5a9pqUC6JnLBMwAAgD8AAIA/M5axPAgp7z7zy949UeugvmXvqD0CUAm9AAAAAAAAAADNgEc9e1T9uCsDwzQc588wmJ6lO4DzrbMAAIA/AACAPzOzADp6KbQ/vW11PMS9z71OgyK78PMZvQAAAAAAAAAATdZ6PeyJirlrmOq76YYZOEKxIrkdF1K2AACAPwAAgD+a3Ww9xPdYPv6w4L2JIay+NN3wvaPyajwAAAAAAAAAAM2cNTx8Gaw/CumRPUo6mb7lkYo7ewzEvAAAAAAAAAAAkzsIPm2VFT82pIO+wK+TvkqnTL7Om+o7AAAAAAAAAACaOY86KZA+ulLagTM+Wuquu4f8uUZsx7MAAIA/AACAP5pvbD5NfoM/ZsHrPi+6z77Xrac+KJwFPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYB+dunIJbkCUhpRSlIwBbJRNHAGMAXSUR0CQ54hdMTN/dX2UKGgGaAloD0MIpx/URUpFcECUhpRSlGgVTR8BaBZHQJDnm0TlDF91fZQoaAZoCWgPQwgAjj17LuNuQJSGlFKUaBVNcwFoFkdAkOjDWbwz+HV9lChoBmgJaA9DCANEwYypl29AlIaUUpRoFU0NAWgWR0CQ6QHq/ub7dX2UKGgGaAloD0MILLmKxS8+ckCUhpRSlGgVTSIBaBZHQJDpoDB/I811fZQoaAZoCWgPQwibyTfb3PBwQJSGlFKUaBVNGAFoFkdAkOpKreZXuHV9lChoBmgJaA9DCOmbNA0KVnNAlIaUUpRoFU05AWgWR0CQ6lGcnVoYdX2UKGgGaAloD0MIG0gXmxY/cUCUhpRSlGgVTdEBaBZHQJDqjq+rU9Z1fZQoaAZoCWgPQwj/lgD8k4VwQJSGlFKUaBVNigFoFkdAkOsBNyo4uXV9lChoBmgJaA9DCIWVCioqwXFAlIaUUpRoFU06AWgWR0CQ7Y6OHWSVdX2UKGgGaAloD0MIUirhCX0KcUCUhpRSlGgVTSIBaBZHQJDtj3Fkxyp1fZQoaAZoCWgPQwjNAu0OKao7QJSGlFKUaBVL52gWR0CQ7hmIj4YadX2UKGgGaAloD0MIFaqbi3+QcUCUhpRSlGgVTR8BaBZHQJDuI/OdGy51fZQoaAZoCWgPQwhxOzQsxslwQJSGlFKUaBVNTAFoFkdAkO6wBkqc3HV9lChoBmgJaA9DCG5sdqQ6CXFAlIaUUpRoFUvyaBZHQJDuwCuEEkl1fZQoaAZoCWgPQwitMeiEENpyQJSGlFKUaBVNGQFoFkdAkO/i8an753V9lChoBmgJaA9DCBE66BJO7XBAlIaUUpRoFU0DAWgWR0CQ8FYxcmjTdX2UKGgGaAloD0MIX38SnzsYc0CUhpRSlGgVTdQBaBZHQJDwZN1yNn51fZQoaAZoCWgPQwiUiPAvwkhwQJSGlFKUaBVNfwFoFkdAkPDXh86V+3V9lChoBmgJaA9DCF5jl6heDXFAlIaUUpRoFU0mAWgWR0CQ8YSqU/wBdX2UKGgGaAloD0MI4j0HlmNwc0CUhpRSlGgVS/9oFkdAkPGKQaJhv3V9lChoBmgJaA9DCNFbPLzn0XBAlIaUUpRoFU0uAWgWR0CQ8kO801qGdX2UKGgGaAloD0MIRDUlWYfZcUCUhpRSlGgVTSwBaBZHQJDzgWUKRdR1fZQoaAZoCWgPQwgEIO7q1QZwQJSGlFKUaBVNXQFoFkdAkPR/LDAJs3V9lChoBmgJaA9DCNCc9SnHWnJAlIaUUpRoFUv7aBZHQJD0yom5UcZ1fZQoaAZoCWgPQwhpkIKnkMVwQJSGlFKUaBVNegFoFkdAkPUJ2+wkgXV9lChoBmgJaA9DCFJEhlU813FAlIaUUpRoFU0VAWgWR0CQ9X/YraufdX2UKGgGaAloD0MIMJ3WbZAzckCUhpRSlGgVTQ0BaBZHQJD1x5kbxVh1fZQoaAZoCWgPQwg2O1J9ZwpyQJSGlFKUaBVNFwFoFkdAkPYCOaOPvXV9lChoBmgJaA9DCJktWRVhLXBAlIaUUpRoFU0LAWgWR0CQ9khlDneSdX2UKGgGaAloD0MIL26jAfzGcECUhpRSlGgVTQkBaBZHQJD3vM/yGzt1fZQoaAZoCWgPQwjnOLcJ9/lyQJSGlFKUaBVNCAFoFkdAkPg7NSqEOHV9lChoBmgJaA9DCE8/qIsUmXBAlIaUUpRoFU1UAWgWR0CQ+ERwIdELdX2UKGgGaAloD0MIWwhyUMJbckCUhpRSlGgVTToBaBZHQJD4tHnU2DR1fZQoaAZoCWgPQwhLkXwlEGpxQJSGlFKUaBVNIgFoFkdAkPmiWZ7Xx3V9lChoBmgJaA9DCB2OrtLdiW5AlIaUUpRoFU0hAWgWR0CQ+aIN3GGVdX2UKGgGaAloD0MIKJ1IMBXlcECUhpRSlGgVTVYBaBZHQJD56tMfzSV1fZQoaAZoCWgPQwhbzxCOmdZyQJSGlFKUaBVNIAFoFkdAkPpB7E5yVHV9lChoBmgJaA9DCE8GR8mrSXNAlIaUUpRoFUvtaBZHQJD8y6DoQnR1fZQoaAZoCWgPQwjRWWYRyhVwQJSGlFKUaBVNLwFoFkdAkPzZR4yGjHV9lChoBmgJaA9DCLly9s7okm9AlIaUUpRoFU0HAWgWR0CQ/QzIV/MGdX2UKGgGaAloD0MIH7sLlBSVb0CUhpRSlGgVTXMBaBZHQJD9/uAqd6N1fZQoaAZoCWgPQwhO8E3TZxdxQJSGlFKUaBVNRAFoFkdAkP4gqVhTfnV9lChoBmgJaA9DCJZ4QNnUN3FAlIaUUpRoFU09AWgWR0CQ/nY+0PYndX2UKGgGaAloD0MI9WbUfBXvbkCUhpRSlGgVTToBaBZHQJD+7yTY/V11fZQoaAZoCWgPQwi7050nXk9xQJSGlFKUaBVL/mgWR0CQ/wRhMJyAdX2UKGgGaAloD0MITPp7KfwGcUCUhpRSlGgVTXoBaBZHQJER4EHMUyp1fZQoaAZoCWgPQwiWe4FZoRtxQJSGlFKUaBVNDAFoFkdAkRJHyy2QXHV9lChoBmgJaA9DCG10zk9xODFAlIaUUpRoFUvQaBZHQJESTgQ6IWR1fZQoaAZoCWgPQwj3OqkvSztxQJSGlFKUaBVNIgFoFkdAkRLK1stTUHV9lChoBmgJaA9DCDsBTYRNenBAlIaUUpRoFU0SAWgWR0CREtXY150KdX2UKGgGaAloD0MIT+s2qP1+N0CUhpRSlGgVS5NoFkdAkRQ/AwfyPXV9lChoBmgJaA9DCDRo6J/gU3FAlIaUUpRoFU0dAWgWR0CRFIgWac7RdX2UKGgGaAloD0MIQURq2sWeQkCUhpRSlGgVS8toFkdAkRUB5LRKH3V9lChoBmgJaA9DCBwLCoMy+G1AlIaUUpRoFU1VAWgWR0CRFWgvUSZjdX2UKGgGaAloD0MIb59VZorLcUCUhpRSlGgVTV4BaBZHQJEVo1P3ztl1fZQoaAZoCWgPQwiTrMPRFY9xQJSGlFKUaBVL/GgWR0CRFhvWYnfEdX2UKGgGaAloD0MISyNm9vkEc0CUhpRSlGgVS+hoFkdAkRag8wHqvHV9lChoBmgJaA9DCA8LtaY5r3FAlIaUUpRoFU0TAWgWR0CRFq6hQFcIdX2UKGgGaAloD0MIzt4ZbdW2ckCUhpRSlGgVTQUBaBZHQJEXpgkTpPh1fZQoaAZoCWgPQwhUHt0IC1tvQJSGlFKUaBVNDwFoFkdAkRhYEOiFkHV9lChoBmgJaA9DCBNjmX4Jpm1AlIaUUpRoFU0XAWgWR0CRGKISUTtcdX2UKGgGaAloD0MI9MDHYMWdcUCUhpRSlGgVTQMBaBZHQJEZoYYR/Vl1fZQoaAZoCWgPQwhj7lpC/pVwQJSGlFKUaBVNMQFoFkdAkRnVxGUfP3V9lChoBmgJaA9DCNTVHYttHW1AlIaUUpRoFU0iAWgWR0CRGmxfOUt7dX2UKGgGaAloD0MI8S2sG6+yc0CUhpRSlGgVTUIBaBZHQJEavXiBGx51fZQoaAZoCWgPQwi7tOGwNGdvQJSGlFKUaBVNEgFoFkdAkRwCBbwBo3V9lChoBmgJaA9DCMZun1XmvXBAlIaUUpRoFU0SAWgWR0CRHHTCcf/4dX2UKGgGaAloD0MI1ljC2pgTb0CUhpRSlGgVTS0BaBZHQJEceuhbnox1fZQoaAZoCWgPQwg1Q6oonlRxQJSGlFKUaBVNjQFoFkdAkRzbp7kXDXV9lChoBmgJaA9DCL3jFB0JpXBAlIaUUpRoFU0qAWgWR0CRHYgUUO/ddX2UKGgGaAloD0MI2o6pu7LzTkCUhpRSlGgVS9loFkdAkR27t/nW8XV9lChoBmgJaA9DCOj3/ZuXf3BAlIaUUpRoFU0oAWgWR0CRHcI9C/oJdX2UKGgGaAloD0MI5Ga4Ad85cECUhpRSlGgVTSsBaBZHQJEeUzXSSeR1fZQoaAZoCWgPQwgXDK65ozxxQJSGlFKUaBVNHwFoFkdAkR6E8/2TPnV9lChoBmgJaA9DCPn1Q2zwlXBAlIaUUpRoFU0kAWgWR0CRIGtNzr/sdX2UKGgGaAloD0MIe9egL73DcECUhpRSlGgVTR0BaBZHQJEgh0U47zV1fZQoaAZoCWgPQwiP39v0pwZzQJSGlFKUaBVL/GgWR0CRIMRHww0wdX2UKGgGaAloD0MIQnbexibSckCUhpRSlGgVTQYBaBZHQJEg1sdkrgB1fZQoaAZoCWgPQwgAdQMFnjxyQJSGlFKUaBVNhQFoFkdAkSFKmCROlHV9lChoBmgJaA9DCEzeADPfHHBAlIaUUpRoFU0PAWgWR0CRIiRNh3JQdX2UKGgGaAloD0MIZ9R8lXxFVECUhpRSlGgVS6xoFkdAkSJMmBvrGHV9lChoBmgJaA9DCHxjCABO93BAlIaUUpRoFU0zAWgWR0CRIs1He7+UdX2UKGgGaAloD0MIMnctIZ/QckCUhpRSlGgVTQsBaBZHQJEk6rbQC0Z1fZQoaAZoCWgPQwjutDUimPRvQJSGlFKUaBVNNAFoFkdAkSUE7CBPK3V9lChoBmgJaA9DCORME7YfC25AlIaUUpRoFU0TAWgWR0CRJWLPldTpdX2UKGgGaAloD0MIAHLChFFgckCUhpRSlGgVTWoBaBZHQJEmrfyf+S91fZQoaAZoCWgPQwjU1LK1fpxxQJSGlFKUaBVNgAFoFkdAkSblxKg7HXV9lChoBmgJaA9DCPg0Jy8ylXBAlIaUUpRoFU1kAWgWR0CRJvSrHU+cdX2UKGgGaAloD0MIURGnk2zxSECUhpRSlGgVS8JoFkdAkScLIxQBP3V9lChoBmgJaA9DCNZXVwUqNHFAlIaUUpRoFUvqaBZHQJEnV7ojfN11fZQoaAZoCWgPQwhkAn6NZGhwQJSGlFKUaBVNRQFoFkdAkSfJHiFTN3V9lChoBmgJaA9DCMRb59/u5nBAlIaUUpRoFU0SAWgWR0CRKEiF0xM4dX2UKGgGaAloD0MI2ClWDUL3cECUhpRSlGgVTXwBaBZHQJEpBHCoCMh1fZQoaAZoCWgPQwjggQGEj9JwQJSGlFKUaBVNKgFoFkdAkSk9YwIt2HV9lChoBmgJaA9DCF9BmrGonXBAlIaUUpRoFUv+aBZHQJEpkJSiudR1fZQoaAZoCWgPQwjajxSRYUNxQJSGlFKUaBVNHgFoFkdAkSoy0v4/NnV9lChoBmgJaA9DCMkcy7vqxm1AlIaUUpRoFU0HAWgWR0CRLLkdmxt6dX2UKGgGaAloD0MIRtPZyWANckCUhpRSlGgVTXMBaBZHQJEtgF0PpY91fZQoaAZoCWgPQwjM8QpEj4BxQJSGlFKUaBVNNgFoFkdAkS3P38GcF3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-RL.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f61212e6f0b5d3966c1ff61264e148d158388bf9eea3232d3b4f2f291e005ba
|
3 |
+
size 147198
|
ppo-LunarLander-v2-RL/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2-RL/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb2d1362040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb2d13620d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb2d1362160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb2d13621f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb2d1362280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb2d1362310>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb2d13623a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb2d1362430>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb2d13624c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb2d1362550>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb2d13625e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb2d135b780>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1673071755963980674,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABoo7tcgyW6DpjPupPvtrXtTGa6BXrtOQAAgD8AAIA/mr3XPFx7P7paBIe5pQ6MtJKoRjsOjZ84AACAPwAAgD9mDA4919Izuwtt2jseA4882m5VvMt9dj0AAIA/AACAP5rWl7xI6Yu6ISqwOcoyMbZe/Qq7isXLuAAAgD8AAIA/ADGzvLjp7LtGB8m866M+O3GHaz2PJSC8AACAPwAAgD/Nffo8ymWjPuPwHz2/Kpu+Yk1hPUB9fj0AAAAAAAAAAJpOo7wUhJK6fqo2syzQ5a9pqUC6JnLBMwAAgD8AAIA/M5axPAgp7z7zy949UeugvmXvqD0CUAm9AAAAAAAAAADNgEc9e1T9uCsDwzQc588wmJ6lO4DzrbMAAIA/AACAPzOzADp6KbQ/vW11PMS9z71OgyK78PMZvQAAAAAAAAAATdZ6PeyJirlrmOq76YYZOEKxIrkdF1K2AACAPwAAgD+a3Ww9xPdYPv6w4L2JIay+NN3wvaPyajwAAAAAAAAAAM2cNTx8Gaw/CumRPUo6mb7lkYo7ewzEvAAAAAAAAAAAkzsIPm2VFT82pIO+wK+TvkqnTL7Om+o7AAAAAAAAAACaOY86KZA+ulLagTM+Wuquu4f8uUZsx7MAAIA/AACAP5pvbD5NfoM/ZsHrPi+6z77Xrac+KJwFPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYB+dunIJbkCUhpRSlIwBbJRNHAGMAXSUR0CQ54hdMTN/dX2UKGgGaAloD0MIpx/URUpFcECUhpRSlGgVTR8BaBZHQJDnm0TlDF91fZQoaAZoCWgPQwgAjj17LuNuQJSGlFKUaBVNcwFoFkdAkOjDWbwz+HV9lChoBmgJaA9DCANEwYypl29AlIaUUpRoFU0NAWgWR0CQ6QHq/ub7dX2UKGgGaAloD0MILLmKxS8+ckCUhpRSlGgVTSIBaBZHQJDpoDB/I811fZQoaAZoCWgPQwibyTfb3PBwQJSGlFKUaBVNGAFoFkdAkOpKreZXuHV9lChoBmgJaA9DCOmbNA0KVnNAlIaUUpRoFU05AWgWR0CQ6lGcnVoYdX2UKGgGaAloD0MIG0gXmxY/cUCUhpRSlGgVTdEBaBZHQJDqjq+rU9Z1fZQoaAZoCWgPQwj/lgD8k4VwQJSGlFKUaBVNigFoFkdAkOsBNyo4uXV9lChoBmgJaA9DCIWVCioqwXFAlIaUUpRoFU06AWgWR0CQ7Y6OHWSVdX2UKGgGaAloD0MIUirhCX0KcUCUhpRSlGgVTSIBaBZHQJDtj3Fkxyp1fZQoaAZoCWgPQwjNAu0OKao7QJSGlFKUaBVL52gWR0CQ7hmIj4YadX2UKGgGaAloD0MIFaqbi3+QcUCUhpRSlGgVTR8BaBZHQJDuI/OdGy51fZQoaAZoCWgPQwhxOzQsxslwQJSGlFKUaBVNTAFoFkdAkO6wBkqc3HV9lChoBmgJaA9DCG5sdqQ6CXFAlIaUUpRoFUvyaBZHQJDuwCuEEkl1fZQoaAZoCWgPQwitMeiEENpyQJSGlFKUaBVNGQFoFkdAkO/i8an753V9lChoBmgJaA9DCBE66BJO7XBAlIaUUpRoFU0DAWgWR0CQ8FYxcmjTdX2UKGgGaAloD0MIX38SnzsYc0CUhpRSlGgVTdQBaBZHQJDwZN1yNn51fZQoaAZoCWgPQwiUiPAvwkhwQJSGlFKUaBVNfwFoFkdAkPDXh86V+3V9lChoBmgJaA9DCF5jl6heDXFAlIaUUpRoFU0mAWgWR0CQ8YSqU/wBdX2UKGgGaAloD0MI4j0HlmNwc0CUhpRSlGgVS/9oFkdAkPGKQaJhv3V9lChoBmgJaA9DCNFbPLzn0XBAlIaUUpRoFU0uAWgWR0CQ8kO801qGdX2UKGgGaAloD0MIRDUlWYfZcUCUhpRSlGgVTSwBaBZHQJDzgWUKRdR1fZQoaAZoCWgPQwgEIO7q1QZwQJSGlFKUaBVNXQFoFkdAkPR/LDAJs3V9lChoBmgJaA9DCNCc9SnHWnJAlIaUUpRoFUv7aBZHQJD0yom5UcZ1fZQoaAZoCWgPQwhpkIKnkMVwQJSGlFKUaBVNegFoFkdAkPUJ2+wkgXV9lChoBmgJaA9DCFJEhlU813FAlIaUUpRoFU0VAWgWR0CQ9X/YraufdX2UKGgGaAloD0MIMJ3WbZAzckCUhpRSlGgVTQ0BaBZHQJD1x5kbxVh1fZQoaAZoCWgPQwg2O1J9ZwpyQJSGlFKUaBVNFwFoFkdAkPYCOaOPvXV9lChoBmgJaA9DCJktWRVhLXBAlIaUUpRoFU0LAWgWR0CQ9khlDneSdX2UKGgGaAloD0MIL26jAfzGcECUhpRSlGgVTQkBaBZHQJD3vM/yGzt1fZQoaAZoCWgPQwjnOLcJ9/lyQJSGlFKUaBVNCAFoFkdAkPg7NSqEOHV9lChoBmgJaA9DCE8/qIsUmXBAlIaUUpRoFU1UAWgWR0CQ+ERwIdELdX2UKGgGaAloD0MIWwhyUMJbckCUhpRSlGgVTToBaBZHQJD4tHnU2DR1fZQoaAZoCWgPQwhLkXwlEGpxQJSGlFKUaBVNIgFoFkdAkPmiWZ7Xx3V9lChoBmgJaA9DCB2OrtLdiW5AlIaUUpRoFU0hAWgWR0CQ+aIN3GGVdX2UKGgGaAloD0MIKJ1IMBXlcECUhpRSlGgVTVYBaBZHQJD56tMfzSV1fZQoaAZoCWgPQwhbzxCOmdZyQJSGlFKUaBVNIAFoFkdAkPpB7E5yVHV9lChoBmgJaA9DCE8GR8mrSXNAlIaUUpRoFUvtaBZHQJD8y6DoQnR1fZQoaAZoCWgPQwjRWWYRyhVwQJSGlFKUaBVNLwFoFkdAkPzZR4yGjHV9lChoBmgJaA9DCLly9s7okm9AlIaUUpRoFU0HAWgWR0CQ/QzIV/MGdX2UKGgGaAloD0MIH7sLlBSVb0CUhpRSlGgVTXMBaBZHQJD9/uAqd6N1fZQoaAZoCWgPQwhO8E3TZxdxQJSGlFKUaBVNRAFoFkdAkP4gqVhTfnV9lChoBmgJaA9DCJZ4QNnUN3FAlIaUUpRoFU09AWgWR0CQ/nY+0PYndX2UKGgGaAloD0MI9WbUfBXvbkCUhpRSlGgVTToBaBZHQJD+7yTY/V11fZQoaAZoCWgPQwi7050nXk9xQJSGlFKUaBVL/mgWR0CQ/wRhMJyAdX2UKGgGaAloD0MITPp7KfwGcUCUhpRSlGgVTXoBaBZHQJER4EHMUyp1fZQoaAZoCWgPQwiWe4FZoRtxQJSGlFKUaBVNDAFoFkdAkRJHyy2QXHV9lChoBmgJaA9DCG10zk9xODFAlIaUUpRoFUvQaBZHQJESTgQ6IWR1fZQoaAZoCWgPQwj3OqkvSztxQJSGlFKUaBVNIgFoFkdAkRLK1stTUHV9lChoBmgJaA9DCDsBTYRNenBAlIaUUpRoFU0SAWgWR0CREtXY150KdX2UKGgGaAloD0MIT+s2qP1+N0CUhpRSlGgVS5NoFkdAkRQ/AwfyPXV9lChoBmgJaA9DCDRo6J/gU3FAlIaUUpRoFU0dAWgWR0CRFIgWac7RdX2UKGgGaAloD0MIQURq2sWeQkCUhpRSlGgVS8toFkdAkRUB5LRKH3V9lChoBmgJaA9DCBwLCoMy+G1AlIaUUpRoFU1VAWgWR0CRFWgvUSZjdX2UKGgGaAloD0MIb59VZorLcUCUhpRSlGgVTV4BaBZHQJEVo1P3ztl1fZQoaAZoCWgPQwiTrMPRFY9xQJSGlFKUaBVL/GgWR0CRFhvWYnfEdX2UKGgGaAloD0MISyNm9vkEc0CUhpRSlGgVS+hoFkdAkRag8wHqvHV9lChoBmgJaA9DCA8LtaY5r3FAlIaUUpRoFU0TAWgWR0CRFq6hQFcIdX2UKGgGaAloD0MIzt4ZbdW2ckCUhpRSlGgVTQUBaBZHQJEXpgkTpPh1fZQoaAZoCWgPQwhUHt0IC1tvQJSGlFKUaBVNDwFoFkdAkRhYEOiFkHV9lChoBmgJaA9DCBNjmX4Jpm1AlIaUUpRoFU0XAWgWR0CRGKISUTtcdX2UKGgGaAloD0MI9MDHYMWdcUCUhpRSlGgVTQMBaBZHQJEZoYYR/Vl1fZQoaAZoCWgPQwhj7lpC/pVwQJSGlFKUaBVNMQFoFkdAkRnVxGUfP3V9lChoBmgJaA9DCNTVHYttHW1AlIaUUpRoFU0iAWgWR0CRGmxfOUt7dX2UKGgGaAloD0MI8S2sG6+yc0CUhpRSlGgVTUIBaBZHQJEavXiBGx51fZQoaAZoCWgPQwi7tOGwNGdvQJSGlFKUaBVNEgFoFkdAkRwCBbwBo3V9lChoBmgJaA9DCMZun1XmvXBAlIaUUpRoFU0SAWgWR0CRHHTCcf/4dX2UKGgGaAloD0MI1ljC2pgTb0CUhpRSlGgVTS0BaBZHQJEceuhbnox1fZQoaAZoCWgPQwg1Q6oonlRxQJSGlFKUaBVNjQFoFkdAkRzbp7kXDXV9lChoBmgJaA9DCL3jFB0JpXBAlIaUUpRoFU0qAWgWR0CRHYgUUO/ddX2UKGgGaAloD0MI2o6pu7LzTkCUhpRSlGgVS9loFkdAkR27t/nW8XV9lChoBmgJaA9DCOj3/ZuXf3BAlIaUUpRoFU0oAWgWR0CRHcI9C/oJdX2UKGgGaAloD0MI5Ga4Ad85cECUhpRSlGgVTSsBaBZHQJEeUzXSSeR1fZQoaAZoCWgPQwgXDK65ozxxQJSGlFKUaBVNHwFoFkdAkR6E8/2TPnV9lChoBmgJaA9DCPn1Q2zwlXBAlIaUUpRoFU0kAWgWR0CRIGtNzr/sdX2UKGgGaAloD0MIe9egL73DcECUhpRSlGgVTR0BaBZHQJEgh0U47zV1fZQoaAZoCWgPQwiP39v0pwZzQJSGlFKUaBVL/GgWR0CRIMRHww0wdX2UKGgGaAloD0MIQnbexibSckCUhpRSlGgVTQYBaBZHQJEg1sdkrgB1fZQoaAZoCWgPQwgAdQMFnjxyQJSGlFKUaBVNhQFoFkdAkSFKmCROlHV9lChoBmgJaA9DCEzeADPfHHBAlIaUUpRoFU0PAWgWR0CRIiRNh3JQdX2UKGgGaAloD0MIZ9R8lXxFVECUhpRSlGgVS6xoFkdAkSJMmBvrGHV9lChoBmgJaA9DCHxjCABO93BAlIaUUpRoFU0zAWgWR0CRIs1He7+UdX2UKGgGaAloD0MIMnctIZ/QckCUhpRSlGgVTQsBaBZHQJEk6rbQC0Z1fZQoaAZoCWgPQwjutDUimPRvQJSGlFKUaBVNNAFoFkdAkSUE7CBPK3V9lChoBmgJaA9DCORME7YfC25AlIaUUpRoFU0TAWgWR0CRJWLPldTpdX2UKGgGaAloD0MIAHLChFFgckCUhpRSlGgVTWoBaBZHQJEmrfyf+S91fZQoaAZoCWgPQwjU1LK1fpxxQJSGlFKUaBVNgAFoFkdAkSblxKg7HXV9lChoBmgJaA9DCPg0Jy8ylXBAlIaUUpRoFU1kAWgWR0CRJvSrHU+cdX2UKGgGaAloD0MIURGnk2zxSECUhpRSlGgVS8JoFkdAkScLIxQBP3V9lChoBmgJaA9DCNZXVwUqNHFAlIaUUpRoFUvqaBZHQJEnV7ojfN11fZQoaAZoCWgPQwhkAn6NZGhwQJSGlFKUaBVNRQFoFkdAkSfJHiFTN3V9lChoBmgJaA9DCMRb59/u5nBAlIaUUpRoFU0SAWgWR0CRKEiF0xM4dX2UKGgGaAloD0MI2ClWDUL3cECUhpRSlGgVTXwBaBZHQJEpBHCoCMh1fZQoaAZoCWgPQwjggQGEj9JwQJSGlFKUaBVNKgFoFkdAkSk9YwIt2HV9lChoBmgJaA9DCF9BmrGonXBAlIaUUpRoFUv+aBZHQJEpkJSiudR1fZQoaAZoCWgPQwjajxSRYUNxQJSGlFKUaBVNHgFoFkdAkSoy0v4/NnV9lChoBmgJaA9DCMkcy7vqxm1AlIaUUpRoFU0HAWgWR0CRLLkdmxt6dX2UKGgGaAloD0MIRtPZyWANckCUhpRSlGgVTXMBaBZHQJEtgF0PpY91fZQoaAZoCWgPQwjM8QpEj4BxQJSGlFKUaBVNNgFoFkdAkS3P38GcF3VlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2-RL/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b57fc3d6bbfe43c18b33f366e9c5941072bd509898b2bf459729c4fd85db55d
|
3 |
+
size 87929
|
ppo-LunarLander-v2-RL/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:643e2666ae6a7fb23e3cba7340d10cb5f06c0ae2e163eebb6855c5abcda9e0f9
|
3 |
+
size 43201
|
ppo-LunarLander-v2-RL/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-RL/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (206 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 280.47530467372053, "std_reward": 16.714326171786386, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-07T06:44:08.068006"}
|