Update README.md
Browse files
README.md
CHANGED
@@ -8,84 +8,4 @@ tags:
|
|
8 |
|
9 |
---
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
-
|
15 |
-
<!--- Describe your model here -->
|
16 |
-
|
17 |
-
## Usage (Sentence-Transformers)
|
18 |
-
|
19 |
-
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
20 |
-
|
21 |
-
```
|
22 |
-
pip install -U sentence-transformers
|
23 |
-
```
|
24 |
-
|
25 |
-
Then you can use the model like this:
|
26 |
-
|
27 |
-
```python
|
28 |
-
from sentence_transformers import SentenceTransformer
|
29 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
-
|
31 |
-
model = SentenceTransformer('{MODEL_NAME}')
|
32 |
-
embeddings = model.encode(sentences)
|
33 |
-
print(embeddings)
|
34 |
-
```
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
## Usage (HuggingFace Transformers)
|
39 |
-
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
40 |
-
|
41 |
-
```python
|
42 |
-
from transformers import AutoTokenizer, AutoModel
|
43 |
-
import torch
|
44 |
-
|
45 |
-
|
46 |
-
def cls_pooling(model_output, attention_mask):
|
47 |
-
return model_output[0][:,0]
|
48 |
-
|
49 |
-
|
50 |
-
# Sentences we want sentence embeddings for
|
51 |
-
sentences = ['This is an example sentence', 'Each sentence is converted']
|
52 |
-
|
53 |
-
# Load model from HuggingFace Hub
|
54 |
-
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
55 |
-
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
56 |
-
|
57 |
-
# Tokenize sentences
|
58 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
59 |
-
|
60 |
-
# Compute token embeddings
|
61 |
-
with torch.no_grad():
|
62 |
-
model_output = model(**encoded_input)
|
63 |
-
|
64 |
-
# Perform pooling. In this case, cls pooling.
|
65 |
-
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
|
66 |
-
|
67 |
-
print("Sentence embeddings:")
|
68 |
-
print(sentence_embeddings)
|
69 |
-
```
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
## Evaluation Results
|
74 |
-
|
75 |
-
<!--- Describe how your model was evaluated -->
|
76 |
-
|
77 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
## Full Model Architecture
|
82 |
-
```
|
83 |
-
SentenceTransformer(
|
84 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
|
85 |
-
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
86 |
-
)
|
87 |
-
```
|
88 |
-
|
89 |
-
## Citing & Authors
|
90 |
-
|
91 |
-
<!--- Describe where people can find more information -->
|
|
|
8 |
|
9 |
---
|
10 |
|
11 |
+
# mmlw-retrieval-roberta-large
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|