sdadas commited on
Commit
be267ce
·
1 Parent(s): f22c9d0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -81
README.md CHANGED
@@ -8,84 +8,4 @@ tags:
8
 
9
  ---
10
 
11
- # {MODEL_NAME}
12
-
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
-
15
- <!--- Describe your model here -->
16
-
17
- ## Usage (Sentence-Transformers)
18
-
19
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
-
21
- ```
22
- pip install -U sentence-transformers
23
- ```
24
-
25
- Then you can use the model like this:
26
-
27
- ```python
28
- from sentence_transformers import SentenceTransformer
29
- sentences = ["This is an example sentence", "Each sentence is converted"]
30
-
31
- model = SentenceTransformer('{MODEL_NAME}')
32
- embeddings = model.encode(sentences)
33
- print(embeddings)
34
- ```
35
-
36
-
37
-
38
- ## Usage (HuggingFace Transformers)
39
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
40
-
41
- ```python
42
- from transformers import AutoTokenizer, AutoModel
43
- import torch
44
-
45
-
46
- def cls_pooling(model_output, attention_mask):
47
- return model_output[0][:,0]
48
-
49
-
50
- # Sentences we want sentence embeddings for
51
- sentences = ['This is an example sentence', 'Each sentence is converted']
52
-
53
- # Load model from HuggingFace Hub
54
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
55
- model = AutoModel.from_pretrained('{MODEL_NAME}')
56
-
57
- # Tokenize sentences
58
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
59
-
60
- # Compute token embeddings
61
- with torch.no_grad():
62
- model_output = model(**encoded_input)
63
-
64
- # Perform pooling. In this case, cls pooling.
65
- sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
66
-
67
- print("Sentence embeddings:")
68
- print(sentence_embeddings)
69
- ```
70
-
71
-
72
-
73
- ## Evaluation Results
74
-
75
- <!--- Describe how your model was evaluated -->
76
-
77
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
78
-
79
-
80
-
81
- ## Full Model Architecture
82
- ```
83
- SentenceTransformer(
84
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
85
- (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
86
- )
87
- ```
88
-
89
- ## Citing & Authors
90
-
91
- <!--- Describe where people can find more information -->
 
8
 
9
  ---
10
 
11
+ # mmlw-retrieval-roberta-large