File size: 15,679 Bytes
40ca421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/sac/#sac_continuous_actionpy
import argparse
import os
import random
import time
from distutils.util import strtobool

import gymnasium as gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from stable_baselines3.common.buffers import ReplayBuffer
from torch.utils.tensorboard import SummaryWriter


def parse_args():
    # fmt: off
    parser = argparse.ArgumentParser()
    parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
        help="the name of this experiment")
    parser.add_argument("--seed", type=int, default=1,
        help="seed of the experiment")
    parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
        help="if toggled, `torch.backends.cudnn.deterministic=False`")
    parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
        help="if toggled, cuda will be enabled by default")
    parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
        help="if toggled, this experiment will be tracked with Weights and Biases")
    parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
        help="the wandb's project name")
    parser.add_argument("--wandb-entity", type=str, default=None,
        help="the entity (team) of wandb's project")
    parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
        help="whether to capture videos of the agent performances (check out `videos` folder)")
    parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
        help="whether to save model into the `runs/{run_name}` folder")
    parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
        help="whether to upload the saved model to huggingface")
    parser.add_argument("--hf-entity", type=str, default="",
        help="the user or org name of the model repository from the Hugging Face Hub")

    # Algorithm specific arguments
    parser.add_argument("--env-id", type=str, default="Hopper-v4",
        help="the id of the environment")
    parser.add_argument("--total-timesteps", type=int, default=1000000,
        help="total timesteps of the experiments")
    parser.add_argument("--buffer-size", type=int, default=int(1e6),
        help="the replay memory buffer size")
    parser.add_argument("--gamma", type=float, default=0.99,
        help="the discount factor gamma")
    parser.add_argument("--tau", type=float, default=0.005,
        help="target smoothing coefficient (default: 0.005)")
    parser.add_argument("--batch-size", type=int, default=256,
        help="the batch size of sample from the reply memory")
    parser.add_argument("--learning-starts", type=int, default=5e3,
        help="timestep to start learning")
    parser.add_argument("--policy-lr", type=float, default=3e-4,
        help="the learning rate of the policy network optimizer")
    parser.add_argument("--q-lr", type=float, default=1e-3,
        help="the learning rate of the Q network network optimizer")
    parser.add_argument("--policy-frequency", type=int, default=2,
        help="the frequency of training policy (delayed)")
    parser.add_argument("--target-network-frequency", type=int, default=1, # Denis Yarats' implementation delays this by 2.
        help="the frequency of updates for the target nerworks")
    parser.add_argument("--noise-clip", type=float, default=0.5,
        help="noise clip parameter of the Target Policy Smoothing Regularization")
    parser.add_argument("--alpha", type=float, default=0.2,
            help="Entropy regularization coefficient.")
    parser.add_argument("--autotune", type=lambda x:bool(strtobool(x)), default=True, nargs="?", const=True,
        help="automatic tuning of the entropy coefficient")
    args = parser.parse_args()
    # fmt: on
    return args


def make_env(env_id, seed, idx, capture_video, run_name):
    def thunk():
        if capture_video and idx == 0:
            env = gym.make(env_id, render_mode="rgb_array")
            env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
        else:
            env = gym.make(env_id)
        env = gym.wrappers.RecordEpisodeStatistics(env)
        env.action_space.seed(seed)
        return env

    return thunk


# ALGO LOGIC: initialize agent here:
class SoftQNetwork(nn.Module):
    def __init__(self, env):
        super().__init__()
        self.fc1 = nn.Linear(np.array(env.single_observation_space.shape).prod() + np.prod(env.single_action_space.shape), 256)
        self.fc2 = nn.Linear(256, 256)
        self.fc3 = nn.Linear(256, 1)

    def forward(self, x, a):
        x = torch.cat([x, a], 1)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


LOG_STD_MAX = 2
LOG_STD_MIN = -5


class Actor(nn.Module):
    def __init__(self, env):
        super().__init__()
        self.fc1 = nn.Linear(np.array(env.single_observation_space.shape).prod(), 256)
        self.fc2 = nn.Linear(256, 256)
        self.fc_mean = nn.Linear(256, np.prod(env.single_action_space.shape))
        self.fc_logstd = nn.Linear(256, np.prod(env.single_action_space.shape))
        # action rescaling
        self.register_buffer(
            "action_scale", torch.tensor((env.action_space.high - env.action_space.low) / 2.0, dtype=torch.float32)
        )
        self.register_buffer(
            "action_bias", torch.tensor((env.action_space.high + env.action_space.low) / 2.0, dtype=torch.float32)
        )

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        mean = self.fc_mean(x)
        log_std = self.fc_logstd(x)
        log_std = torch.tanh(log_std)
        log_std = LOG_STD_MIN + 0.5 * (LOG_STD_MAX - LOG_STD_MIN) * (log_std + 1)  # From SpinUp / Denis Yarats

        return mean, log_std

    def get_action(self, x):
        mean, log_std = self(x)
        std = log_std.exp()
        normal = torch.distributions.Normal(mean, std)
        x_t = normal.rsample()  # for reparameterization trick (mean + std * N(0,1))
        y_t = torch.tanh(x_t)
        action = y_t * self.action_scale + self.action_bias
        log_prob = normal.log_prob(x_t)
        # Enforcing Action Bound
        log_prob -= torch.log(self.action_scale * (1 - y_t.pow(2)) + 1e-6)
        log_prob = log_prob.sum(1, keepdim=True)
        mean = torch.tanh(mean) * self.action_scale + self.action_bias
        return action, log_prob, mean


if __name__ == "__main__":
    import stable_baselines3 as sb3

    if sb3.__version__ < "2.0":
        raise ValueError(
            """Ongoing migration: run the following command to install the new dependencies:
poetry run pip install "stable_baselines3==2.0.0a1"
"""
        )

    args = parse_args()
    run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
    if args.track:
        import wandb

        wandb.init(
            project=args.wandb_project_name,
            entity=args.wandb_entity,
            sync_tensorboard=True,
            config=vars(args),
            name=run_name,
            monitor_gym=True,
            save_code=True,
        )
    writer = SummaryWriter(f"runs/{run_name}")
    writer.add_text(
        "hyperparameters",
        "|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
    )

    # TRY NOT TO MODIFY: seeding
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.backends.cudnn.deterministic = args.torch_deterministic

    device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")

    # env setup
    envs = gym.vector.SyncVectorEnv([make_env(args.env_id, args.seed, 0, args.capture_video, run_name)])
    assert isinstance(envs.single_action_space, gym.spaces.Box), "only continuous action space is supported"

    max_action = float(envs.single_action_space.high[0])

    actor = Actor(envs).to(device)
    qf1 = SoftQNetwork(envs).to(device)
    qf2 = SoftQNetwork(envs).to(device)
    qf1_target = SoftQNetwork(envs).to(device)
    qf2_target = SoftQNetwork(envs).to(device)
    qf1_target.load_state_dict(qf1.state_dict())
    qf2_target.load_state_dict(qf2.state_dict())
    q_optimizer = optim.Adam(list(qf1.parameters()) + list(qf2.parameters()), lr=args.q_lr)
    actor_optimizer = optim.Adam(list(actor.parameters()), lr=args.policy_lr)

    # Automatic entropy tuning
    if args.autotune:
        target_entropy = -torch.prod(torch.Tensor(envs.single_action_space.shape).to(device)).item()
        log_alpha = torch.zeros(1, requires_grad=True, device=device)
        alpha = log_alpha.exp().item()
        a_optimizer = optim.Adam([log_alpha], lr=args.q_lr)
    else:
        alpha = args.alpha

    envs.single_observation_space.dtype = np.float32
    rb = ReplayBuffer(
        args.buffer_size,
        envs.single_observation_space,
        envs.single_action_space,
        device,
        handle_timeout_termination=False,
    )
    start_time = time.time()

    # TRY NOT TO MODIFY: start the game
    obs, _ = envs.reset(seed=args.seed)
    for global_step in range(args.total_timesteps):
        # ALGO LOGIC: put action logic here
        if global_step < args.learning_starts:
            actions = np.array([envs.single_action_space.sample() for _ in range(envs.num_envs)])
        else:
            actions, _, _ = actor.get_action(torch.Tensor(obs).to(device))
            actions = actions.detach().cpu().numpy()

        # TRY NOT TO MODIFY: execute the game and log data.
        next_obs, rewards, terminations, truncations, infos = envs.step(actions)

        # TRY NOT TO MODIFY: record rewards for plotting purposes
        if "final_info" in infos:
            for info in infos["final_info"]:
                print(f"global_step={global_step}, episodic_return={info['episode']['r']}")
                writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)
                writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)
                break

        # TRY NOT TO MODIFY: save data to reply buffer; handle `final_observation`
        real_next_obs = next_obs.copy()
        for idx, trunc in enumerate(truncations):
            if trunc:
                real_next_obs[idx] = infos["final_observation"][idx]
        rb.add(obs, real_next_obs, actions, rewards, terminations, infos)

        # TRY NOT TO MODIFY: CRUCIAL step easy to overlook
        obs = next_obs

        # ALGO LOGIC: training.
        if global_step > args.learning_starts:
            data = rb.sample(args.batch_size)
            with torch.no_grad():
                next_state_actions, next_state_log_pi, _ = actor.get_action(data.next_observations)
                qf1_next_target = qf1_target(data.next_observations, next_state_actions)
                qf2_next_target = qf2_target(data.next_observations, next_state_actions)
                min_qf_next_target = torch.min(qf1_next_target, qf2_next_target) - alpha * next_state_log_pi
                next_q_value = data.rewards.flatten() + (1 - data.dones.flatten()) * args.gamma * (min_qf_next_target).view(-1)

            qf1_a_values = qf1(data.observations, data.actions).view(-1)
            qf2_a_values = qf2(data.observations, data.actions).view(-1)
            qf1_loss = F.mse_loss(qf1_a_values, next_q_value)
            qf2_loss = F.mse_loss(qf2_a_values, next_q_value)
            qf_loss = qf1_loss + qf2_loss

            # optimize the model
            q_optimizer.zero_grad()
            qf_loss.backward()
            q_optimizer.step()

            if global_step % args.policy_frequency == 0:  # TD 3 Delayed update support
                for _ in range(
                    args.policy_frequency
                ):  # compensate for the delay by doing 'actor_update_interval' instead of 1
                    pi, log_pi, _ = actor.get_action(data.observations)
                    qf1_pi = qf1(data.observations, pi)
                    qf2_pi = qf2(data.observations, pi)
                    min_qf_pi = torch.min(qf1_pi, qf2_pi)
                    actor_loss = ((alpha * log_pi) - min_qf_pi).mean()

                    actor_optimizer.zero_grad()
                    actor_loss.backward()
                    actor_optimizer.step()

                    if args.autotune:
                        with torch.no_grad():
                            _, log_pi, _ = actor.get_action(data.observations)
                        alpha_loss = (-log_alpha.exp() * (log_pi + target_entropy)).mean()

                        a_optimizer.zero_grad()
                        alpha_loss.backward()
                        a_optimizer.step()
                        alpha = log_alpha.exp().item()

            # update the target networks
            if global_step % args.target_network_frequency == 0:
                for param, target_param in zip(qf1.parameters(), qf1_target.parameters()):
                    target_param.data.copy_(args.tau * param.data + (1 - args.tau) * target_param.data)
                for param, target_param in zip(qf2.parameters(), qf2_target.parameters()):
                    target_param.data.copy_(args.tau * param.data + (1 - args.tau) * target_param.data)

            if global_step % 100 == 0:
                writer.add_scalar("losses/qf1_values", qf1_a_values.mean().item(), global_step)
                writer.add_scalar("losses/qf2_values", qf2_a_values.mean().item(), global_step)
                writer.add_scalar("losses/qf1_loss", qf1_loss.item(), global_step)
                writer.add_scalar("losses/qf2_loss", qf2_loss.item(), global_step)
                writer.add_scalar("losses/qf_loss", qf_loss.item() / 2.0, global_step)
                writer.add_scalar("losses/actor_loss", actor_loss.item(), global_step)
                writer.add_scalar("losses/alpha", alpha, global_step)
                print("SPS:", int(global_step / (time.time() - start_time)))
                writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
                if args.autotune:
                    writer.add_scalar("losses/alpha_loss", alpha_loss.item(), global_step)

    if args.save_model:
        model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
        torch.save((actor.state_dict(), qf1.state_dict(), qf2.state_dict()), model_path)
        print(f"model saved to {model_path}")
        from cleanrl_utils.evals.sac_eval import evaluate

        episodic_returns = evaluate(
            model_path,
            make_env,
            args.env_id,
            eval_episodes=10,
            run_name=f"{run_name}-eval",
            Model=(Actor, SoftQNetwork),
            device=device,
        )
        for idx, episodic_return in enumerate(episodic_returns):
            writer.add_scalar("eval/episodic_return", episodic_return, idx)

        if args.upload_model:
            from cleanrl_utils.huggingface import push_to_hub

            repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
            repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
            push_to_hub(args, episodic_returns, repo_id, "SAC", f"runs/{run_name}", f"videos/{run_name}-eval")

    envs.close()
    writer.close()