Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- km
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- hf-asr-leaderboard
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- openslr
|
10 |
+
- google/fleurs
|
11 |
+
|
12 |
+
metrics:
|
13 |
+
- wer
|
14 |
+
|
15 |
+
model-index:
|
16 |
+
- name: Whisper Small Khmer - Seanghay Yath
|
17 |
+
results:
|
18 |
+
- task:
|
19 |
+
name: Automatic Speech Recognition
|
20 |
+
type: automatic-speech-recognition
|
21 |
+
dataset:
|
22 |
+
name: Google FLEURS
|
23 |
+
type: google/fleurs
|
24 |
+
config: km_kh
|
25 |
+
split: all
|
26 |
+
metrics:
|
27 |
+
- name: Wer
|
28 |
+
type: wer
|
29 |
+
value: 1.0704381586245146
|
30 |
+
---
|
31 |
+
|
32 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
33 |
+
should probably proofread and complete it, then remove this comment. -->
|
34 |
+
|
35 |
+
# Whisper Small Khmer - Seanghay Yath
|
36 |
+
|
37 |
+
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Google FLEURS & OpenSLR dataset.
|
38 |
+
It achieves the following results on the evaluation set:
|
39 |
+
- Loss: 0.4484
|
40 |
+
- Wer: 1.0704
|
41 |
+
|
42 |
+
## Model description
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Intended uses & limitations
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training and evaluation data
|
51 |
+
|
52 |
+
More information needed
|
53 |
+
|
54 |
+
## Training procedure
|
55 |
+
|
56 |
+
### Training hyperparameters
|
57 |
+
|
58 |
+
The following hyperparameters were used during training:
|
59 |
+
- learning_rate: 6.25e-06
|
60 |
+
- train_batch_size: 16
|
61 |
+
- eval_batch_size: 8
|
62 |
+
- seed: 42
|
63 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
64 |
+
- lr_scheduler_type: linear
|
65 |
+
- lr_scheduler_warmup_steps: 800
|
66 |
+
- training_steps: 4000
|
67 |
+
- mixed_precision_training: Native AMP
|
68 |
+
|
69 |
+
### Training results
|
70 |
+
|
71 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
72 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
73 |
+
| 0.2052 | 3.33 | 1000 | 0.3582 | 1.0233 |
|
74 |
+
| 0.0465 | 6.67 | 2000 | 0.3129 | 1.0105 |
|
75 |
+
| 0.0089 | 10.0 | 3000 | 0.3977 | 1.0214 |
|
76 |
+
| 0.0016 | 13.33 | 4000 | 0.4484 | 1.0704 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.28.0.dev0
|
82 |
+
- Pytorch 1.12.1
|
83 |
+
- Datasets 2.11.1.dev0
|
84 |
+
- Tokenizers 0.13.3
|