--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: taskA-DeBERTa-large-1.0.0 results: [] --- # taskA-DeBERTa-large-1.0.0 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1001 - Accuracy: 0.7924 - Precision: 0.5855 - Recall: 0.5821 - F1: 0.5838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5231 | 0.39 | 500 | 0.5201 | 0.7967 | 0.7519 | 0.2795 | 0.4076 | | 0.4515 | 0.78 | 1000 | 0.5449 | 0.8032 | 0.7937 | 0.2882 | 0.4228 | | 0.4128 | 1.16 | 1500 | 0.6890 | 0.8190 | 0.6805 | 0.5216 | 0.5905 | | 0.4025 | 1.55 | 2000 | 0.9337 | 0.7787 | 0.5481 | 0.6571 | 0.5976 | | 0.4251 | 1.94 | 2500 | 0.8829 | 0.7981 | 0.6070 | 0.5476 | 0.5758 | | 0.2864 | 2.33 | 3000 | 1.1001 | 0.7924 | 0.5855 | 0.5821 | 0.5838 | | 0.3186 | 2.71 | 3500 | 1.1268 | 0.7794 | 0.5504 | 0.6455 | 0.5942 | | 0.2679 | 3.1 | 4000 | 1.0378 | 0.8039 | 0.6093 | 0.6023 | 0.6058 | | 0.1893 | 3.49 | 4500 | 1.1135 | 0.7996 | 0.6062 | 0.5677 | 0.5863 | | 0.2037 | 3.88 | 5000 | 1.1569 | 0.7945 | 0.5886 | 0.5937 | 0.5911 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2