update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- mozilla-foundation/common_voice_13_0
|
9 |
+
metrics:
|
10 |
+
- wer
|
11 |
+
model-index:
|
12 |
+
- name: Whisper large zh - seiching
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Automatic Speech Recognition
|
16 |
+
type: automatic-speech-recognition
|
17 |
+
dataset:
|
18 |
+
name: Common Voice 13
|
19 |
+
type: mozilla-foundation/common_voice_13_0
|
20 |
+
config: zh-TW
|
21 |
+
split: test
|
22 |
+
args: zh-TW
|
23 |
+
metrics:
|
24 |
+
- name: Wer
|
25 |
+
type: wer
|
26 |
+
value: 39.92812936713915
|
27 |
+
---
|
28 |
+
|
29 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
30 |
+
should probably proofread and complete it, then remove this comment. -->
|
31 |
+
|
32 |
+
# Whisper large zh - seiching
|
33 |
+
|
34 |
+
This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Common Voice 13 dataset.
|
35 |
+
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.2457
|
37 |
+
- Wer Ortho: 40.3316
|
38 |
+
- Wer: 39.9281
|
39 |
+
|
40 |
+
## Model description
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Intended uses & limitations
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training and evaluation data
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Training procedure
|
53 |
+
|
54 |
+
### Training hyperparameters
|
55 |
+
|
56 |
+
The following hyperparameters were used during training:
|
57 |
+
- learning_rate: 1e-05
|
58 |
+
- train_batch_size: 16
|
59 |
+
- eval_batch_size: 16
|
60 |
+
- seed: 42
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: constant_with_warmup
|
63 |
+
- lr_scheduler_warmup_steps: 50
|
64 |
+
- training_steps: 4000
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
|
70 |
+
| 0.0361 | 0.69 | 500 | 0.1989 | 38.3627 | 37.9517 |
|
71 |
+
| 0.0105 | 1.38 | 1000 | 0.2217 | 39.0259 | 38.9100 |
|
72 |
+
| 0.0208 | 2.06 | 1500 | 0.2299 | 39.6891 | 39.3292 |
|
73 |
+
| 0.0091 | 2.75 | 2000 | 0.2264 | 39.8964 | 39.4091 |
|
74 |
+
| 0.0153 | 3.44 | 2500 | 0.2363 | 39.8135 | 39.3891 |
|
75 |
+
| 0.0191 | 4.13 | 3000 | 0.2415 | 40.1865 | 40.0080 |
|
76 |
+
| 0.0061 | 4.81 | 3500 | 0.2542 | 41.1813 | 39.9281 |
|
77 |
+
| 0.0107 | 5.5 | 4000 | 0.2457 | 40.3316 | 39.9281 |
|
78 |
+
|
79 |
+
|
80 |
+
### Framework versions
|
81 |
+
|
82 |
+
- Transformers 4.30.2
|
83 |
+
- Pytorch 1.13.1+cu117
|
84 |
+
- Datasets 2.13.2
|
85 |
+
- Tokenizers 0.13.3
|