sekarmulyani
commited on
Commit
•
ca23783
1
Parent(s):
77d224a
Update README.md
Browse files
README.md
CHANGED
@@ -16,9 +16,11 @@ widget:
|
|
16 |
example_title: "Contoh 3"
|
17 |
---
|
18 |
|
|
|
|
|
19 |
## EN:
|
20 |
|
21 |
-
The project of this pretrained_model involves a series of complex steps that begin with leveraging the indolem/indobertweet-base-uncased pretrained model. Through a meticulous fine-tuning process, this model has been enhanced by utilizing the optimizer.pt from the aforementioned pretrained model.
|
22 |
|
23 |
The primary objective behind the development of this model is to address the bias frequently encountered in product reviews on e-commerce platforms. One of the classic issues on such platforms is the disconnect between the language used in reviews and the ratings given by users. This model was conceived with a focus on mitigating this problem.
|
24 |
|
@@ -30,9 +32,11 @@ This project is oriented towards academic pursuits and is undertaken as a stipul
|
|
30 |
|
31 |
---
|
32 |
|
|
|
|
|
33 |
## ID:
|
34 |
|
35 |
-
Proyek pretrained_model ini melibatkan serangkaian langkah kompleks yang dimulai dengan pemanfaatan pretrained model indolem/indobertweet-base-uncased. Melalui proses fine-tuning yang cermat, model ini berhasil disempurnakan dengan memanfaatkan optimizer.pt yang ada dalam pretrained model tersebut.
|
36 |
|
37 |
Tujuan utama di balik pengembangan model ini adalah mengatasi bias yang sering muncul dalam ulasan produk di platform e-commerce. Salah satu masalah klasik di platform semacam ini adalah ketidaksesuaian antara kata-kata dalam ulasan dan peringkat yang diberikan oleh pengguna. Model ini diciptakan dengan fokus pada penyelesaian masalah ini.
|
38 |
|
|
|
16 |
example_title: "Contoh 3"
|
17 |
---
|
18 |
|
19 |
+
# E-Commerce Rating's Review Classification: Women's Beauty Product
|
20 |
+
|
21 |
## EN:
|
22 |
|
23 |
+
The project of this pretrained_model involves a series of complex steps that begin with leveraging the [IndoBERTweet](https://huggingface.co/indolem/indobertweet-base-uncased) pretrained model. Through a meticulous fine-tuning process, this model has been enhanced by utilizing the optimizer.pt from the aforementioned pretrained model.
|
24 |
|
25 |
The primary objective behind the development of this model is to address the bias frequently encountered in product reviews on e-commerce platforms. One of the classic issues on such platforms is the disconnect between the language used in reviews and the ratings given by users. This model was conceived with a focus on mitigating this problem.
|
26 |
|
|
|
32 |
|
33 |
---
|
34 |
|
35 |
+
# Klasifikasi Rating Ulasan E-Commerce: Produk Kecantikan Wanita
|
36 |
+
|
37 |
## ID:
|
38 |
|
39 |
+
Proyek pretrained_model ini melibatkan serangkaian langkah kompleks yang dimulai dengan pemanfaatan pretrained model [IndoBERTweet](https://huggingface.co/indolem/indobertweet-base-uncased). Melalui proses fine-tuning yang cermat, model ini berhasil disempurnakan dengan memanfaatkan optimizer.pt yang ada dalam pretrained model tersebut.
|
40 |
|
41 |
Tujuan utama di balik pengembangan model ini adalah mengatasi bias yang sering muncul dalam ulasan produk di platform e-commerce. Salah satu masalah klasik di platform semacam ini adalah ketidaksesuaian antara kata-kata dalam ulasan dan peringkat yang diberikan oleh pengguna. Model ini diciptakan dengan fokus pada penyelesaian masalah ini.
|
42 |
|