librarian-bot commited on
Commit
c0d3249
·
1 Parent(s): 695cb36

Librarian Bot: Add base_model information to model

Browse files

This pull request aims to enrich the metadata of your model by adding [`nlptown/bert-base-multilingual-uncased-sentiment`](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.

How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.

**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.

For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co/spaces/librarian-bots/base_model_explorer).

This PR comes courtesy of [Librarian Bot](https://huggingface.co/librarian-bot). If you have any feedback, queries, or need assistance, please don't hesitate to reach out to [@davanstrien](https://huggingface.co/davanstrien).

If you want to automatically add `base_model` metadata to more of your modes you can use the [Librarian Bot](https://huggingface.co/librarian-bot) [Metadata Request Service](https://huggingface.co/spaces/librarian-bots/metadata_request_service)!

Files changed (1) hide show
  1. README.md +6 -5
README.md CHANGED
@@ -4,14 +4,15 @@ tags:
4
  - generated_from_trainer
5
  datasets:
6
  - tweet_eval
 
 
 
 
 
 
7
  model-index:
8
  - name: selims
9
  results: []
10
- widget:
11
- - text: "I love conducting research on twins!"
12
- example_title: "Sentiment analysis - English"
13
- - text: "Ja, ik vind het tweelingen onderzoek leuk maar complex, weet je."
14
- example_title: "Sentiment analysis - Dutch"
15
  ---
16
 
17
  # selims
 
4
  - generated_from_trainer
5
  datasets:
6
  - tweet_eval
7
+ widget:
8
+ - text: I love conducting research on twins!
9
+ example_title: Sentiment analysis - English
10
+ - text: Ja, ik vind het tweelingen onderzoek leuk maar complex, weet je.
11
+ example_title: Sentiment analysis - Dutch
12
+ base_model: nlptown/bert-base-multilingual-uncased-sentiment
13
  model-index:
14
  - name: selims
15
  results: []
 
 
 
 
 
16
  ---
17
 
18
  # selims