selmamalak commited on
Commit
5339525
1 Parent(s): bab737b

Model save

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
7
+ datasets:
8
+ - medmnist-v2
9
+ metrics:
10
+ - accuracy
11
+ - precision
12
+ - recall
13
+ - f1
14
+ model-index:
15
+ - name: blood-beit-base-finetuned
16
+ results: []
17
+ ---
18
+
19
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
20
+ should probably proofread and complete it, then remove this comment. -->
21
+
22
+ # blood-beit-base-finetuned
23
+
24
+ This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the medmnist-v2 dataset.
25
+ It achieves the following results on the evaluation set:
26
+ - Loss: 0.0785
27
+ - Accuracy: 0.9708
28
+ - Precision: 0.9668
29
+ - Recall: 0.9737
30
+ - F1: 0.9698
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 0.005
50
+ - train_batch_size: 16
51
+ - eval_batch_size: 16
52
+ - seed: 42
53
+ - gradient_accumulation_steps: 4
54
+ - total_train_batch_size: 64
55
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
56
+ - lr_scheduler_type: linear
57
+ - num_epochs: 10
58
+ - mixed_precision_training: Native AMP
59
+
60
+ ### Training results
61
+
62
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
63
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
64
+ | 0.4657 | 1.0 | 187 | 0.2452 | 0.9095 | 0.8964 | 0.9083 | 0.8973 |
65
+ | 0.4327 | 2.0 | 374 | 0.2111 | 0.9182 | 0.9299 | 0.8921 | 0.9007 |
66
+ | 0.3977 | 3.0 | 561 | 0.1743 | 0.9340 | 0.9229 | 0.9282 | 0.9244 |
67
+ | 0.3318 | 4.0 | 748 | 0.1776 | 0.9352 | 0.9248 | 0.9353 | 0.9285 |
68
+ | 0.3461 | 5.0 | 935 | 0.1703 | 0.9381 | 0.9311 | 0.9344 | 0.9305 |
69
+ | 0.3309 | 6.0 | 1122 | 0.1956 | 0.9369 | 0.9336 | 0.9397 | 0.9335 |
70
+ | 0.3088 | 7.0 | 1309 | 0.1179 | 0.9533 | 0.9427 | 0.9525 | 0.9461 |
71
+ | 0.2129 | 8.0 | 1496 | 0.0992 | 0.9638 | 0.9569 | 0.9674 | 0.9611 |
72
+ | 0.2049 | 9.0 | 1683 | 0.0847 | 0.9679 | 0.9627 | 0.9683 | 0.9651 |
73
+ | 0.2007 | 10.0 | 1870 | 0.0785 | 0.9708 | 0.9668 | 0.9737 | 0.9698 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - PEFT 0.11.1
79
+ - Transformers 4.40.2
80
+ - Pytorch 2.2.1+cu121
81
+ - Datasets 2.19.1
82
+ - Tokenizers 0.19.1