--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: microsoft/beit-base-patch16-224-pt22k-ft22k datasets: - medmnist-v2 metrics: - accuracy - precision - recall - f1 model-index: - name: blood-beit-base-finetuned results: [] --- # blood-beit-base-finetuned This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the medmnist-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.0847 - Accuracy: 0.9737 - Precision: 0.9726 - Recall: 0.9724 - F1: 0.9724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4657 | 1.0 | 187 | 0.2452 | 0.9095 | 0.8964 | 0.9083 | 0.8973 | | 0.4327 | 2.0 | 374 | 0.2111 | 0.9182 | 0.9299 | 0.8921 | 0.9007 | | 0.3977 | 3.0 | 561 | 0.1743 | 0.9340 | 0.9229 | 0.9282 | 0.9244 | | 0.3318 | 4.0 | 748 | 0.1776 | 0.9352 | 0.9248 | 0.9353 | 0.9285 | | 0.3461 | 5.0 | 935 | 0.1703 | 0.9381 | 0.9311 | 0.9344 | 0.9305 | | 0.3309 | 6.0 | 1122 | 0.1956 | 0.9369 | 0.9336 | 0.9397 | 0.9335 | | 0.3088 | 7.0 | 1309 | 0.1179 | 0.9533 | 0.9427 | 0.9525 | 0.9461 | | 0.2129 | 8.0 | 1496 | 0.0992 | 0.9638 | 0.9569 | 0.9674 | 0.9611 | | 0.2049 | 9.0 | 1683 | 0.0847 | 0.9679 | 0.9627 | 0.9683 | 0.9651 | | 0.2007 | 10.0 | 1870 | 0.0785 | 0.9708 | 0.9668 | 0.9737 | 0.9698 | ### Framework versions - PEFT 0.11.1 - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1