--- license: apache-2.0 library_name: peft tags: - generated_from_trainer datasets: - medmnist-v2 metrics: - accuracy - precision - recall - f1 base_model: facebook/deit-base-patch16-224 model-index: - name: blood-deit-base-finetuned results: [] --- # blood-deit-base-finetuned This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the medmnist-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.0767 - Accuracy: 0.9737 - Precision: 0.9730 - Recall: 0.9706 - F1: 0.9718 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4839 | 1.0 | 187 | 0.2824 | 0.8978 | 0.9057 | 0.8662 | 0.8763 | | 0.4762 | 2.0 | 374 | 0.2146 | 0.9282 | 0.9246 | 0.9161 | 0.9186 | | 0.3445 | 3.0 | 561 | 0.2135 | 0.9235 | 0.9244 | 0.9159 | 0.9168 | | 0.2963 | 4.0 | 748 | 0.1647 | 0.9416 | 0.9323 | 0.9427 | 0.9346 | | 0.3328 | 5.0 | 935 | 0.1762 | 0.9387 | 0.9323 | 0.9372 | 0.9316 | | 0.3138 | 6.0 | 1122 | 0.1480 | 0.9439 | 0.9421 | 0.9482 | 0.9426 | | 0.2489 | 7.0 | 1309 | 0.1134 | 0.9620 | 0.9536 | 0.9609 | 0.9563 | | 0.193 | 8.0 | 1496 | 0.1020 | 0.9638 | 0.9666 | 0.9581 | 0.9616 | | 0.1973 | 9.0 | 1683 | 0.0754 | 0.9749 | 0.9733 | 0.9761 | 0.9743 | | 0.1711 | 10.0 | 1870 | 0.0533 | 0.9819 | 0.9826 | 0.9824 | 0.9825 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2