--- license: apache-2.0 library_name: peft tags: - generated_from_trainer datasets: - medmnist-v2 metrics: - accuracy - precision - recall - f1 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k model-index: - name: derma-beit-base-finetuned results: [] --- # derma-beit-base-finetuned This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the medmnist-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.6096 - Accuracy: 0.7727 - Precision: 0.6427 - Recall: 0.5346 - F1: 0.5283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9135 | 1.0 | 109 | 0.7698 | 0.7198 | 0.5179 | 0.3103 | 0.3050 | | 0.8352 | 2.0 | 219 | 0.7352 | 0.7298 | 0.5362 | 0.4231 | 0.3884 | | 0.7891 | 3.0 | 328 | 0.7575 | 0.7178 | 0.3954 | 0.4000 | 0.3667 | | 0.7649 | 4.0 | 438 | 0.6879 | 0.7418 | 0.5009 | 0.3972 | 0.4146 | | 0.8146 | 5.0 | 547 | 0.7471 | 0.7178 | 0.4490 | 0.4141 | 0.3641 | | 0.6831 | 6.0 | 657 | 0.7007 | 0.7368 | 0.4777 | 0.4148 | 0.4252 | | 0.695 | 7.0 | 766 | 0.6797 | 0.7428 | 0.4638 | 0.5334 | 0.4841 | | 0.6646 | 8.0 | 876 | 0.6534 | 0.7537 | 0.6130 | 0.5077 | 0.4933 | | 0.675 | 9.0 | 985 | 0.6238 | 0.7667 | 0.6518 | 0.5431 | 0.5308 | | 0.6145 | 9.95 | 1090 | 0.6096 | 0.7727 | 0.6427 | 0.5346 | 0.5283 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2