--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: microsoft/beit-base-patch16-224-pt22k-ft22k datasets: - medmnist-v2 metrics: - accuracy - precision - recall - f1 model-index: - name: organsmnist-beit-base-finetuned results: [] --- # organsmnist-beit-base-finetuned This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the medmnist-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4609 - Accuracy: 0.8240 - Precision: 0.7895 - Recall: 0.7821 - F1: 0.7852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9608 | 1.0 | 218 | 0.6055 | 0.7765 | 0.7235 | 0.7233 | 0.7007 | | 0.9984 | 2.0 | 436 | 0.4812 | 0.8067 | 0.7265 | 0.7321 | 0.7114 | | 0.8265 | 3.0 | 654 | 0.3726 | 0.8520 | 0.8005 | 0.7713 | 0.7683 | | 0.7938 | 4.0 | 872 | 0.3913 | 0.8507 | 0.7812 | 0.7831 | 0.7554 | | 0.8149 | 5.0 | 1090 | 0.3676 | 0.8532 | 0.7687 | 0.8002 | 0.7702 | | 0.6737 | 6.0 | 1308 | 0.3305 | 0.8675 | 0.8306 | 0.8117 | 0.7934 | | 0.5695 | 7.0 | 1526 | 0.2481 | 0.9029 | 0.8546 | 0.8469 | 0.8321 | | 0.5857 | 8.0 | 1744 | 0.2912 | 0.8923 | 0.8464 | 0.8356 | 0.8340 | | 0.4834 | 9.0 | 1962 | 0.2658 | 0.8997 | 0.8428 | 0.8410 | 0.8286 | | 0.5287 | 10.0 | 2180 | 0.2590 | 0.9050 | 0.8524 | 0.8468 | 0.8468 | ### Framework versions - PEFT 0.11.1 - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2