--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: microsoft/beit-base-patch16-224-pt22k-ft22k datasets: - medmnist-v2 metrics: - accuracy - precision - recall - f1 model-index: - name: pneumoniamnist-beit-base-finetuned results: [] --- # pneumoniamnist-beit-base-finetuned This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the medmnist-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3960 - Accuracy: 0.8446 - Precision: 0.8354 - Recall: 0.8312 - F1: 0.8332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5947 | 0.9898 | 73 | 0.5165 | 0.7424 | 0.3712 | 0.5 | 0.4261 | | 0.4888 | 1.9932 | 147 | 0.3450 | 0.8569 | 0.8116 | 0.8190 | 0.8151 | | 0.4022 | 2.9966 | 221 | 0.4225 | 0.8340 | 0.7914 | 0.8567 | 0.8079 | | 0.4319 | 4.0 | 295 | 0.3600 | 0.8588 | 0.8123 | 0.8589 | 0.8292 | | 0.3836 | 4.9898 | 368 | 0.3665 | 0.8511 | 0.8054 | 0.8610 | 0.8233 | | 0.3887 | 5.9932 | 442 | 0.3667 | 0.8645 | 0.8197 | 0.8749 | 0.8383 | | 0.3947 | 6.9966 | 516 | 0.3951 | 0.8531 | 0.8098 | 0.8744 | 0.8283 | | 0.3741 | 8.0 | 590 | 0.3449 | 0.8683 | 0.8229 | 0.8678 | 0.8398 | | 0.3964 | 8.9898 | 663 | 0.3625 | 0.8588 | 0.8128 | 0.8638 | 0.8305 | | 0.3845 | 9.8983 | 730 | 0.3569 | 0.8569 | 0.8111 | 0.8649 | 0.8292 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1