File size: 2,693 Bytes
0fe9509 5d549c6 0fe9509 d67d129 946c857 d67d129 c2f38b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
language:
- "en"
metrics:
- code_eval
library_name: transformers
tags:
- Code Generation
datasets:
- andersonbcdefg/synthetic_retrieval_tasks
- ise-uiuc/Magicoder-Evol-Instruct-110K
license: "apache-2.0"
---
# 33x Coding Model
33x-coder is a powerful Llama based model available on Hugging Face, designed to assist and augment coding tasks. Leveraging the capabilities of advanced language models, 33x-coder specializes in understanding and generating code. This model is trained on a diverse range of programming languages and coding scenarios, making it a versatile tool for developers looking to streamline their coding process. Whether you're debugging, seeking coding advice, or generating entire scripts, 33x-coder can provide relevant, syntactically correct code snippets and comprehensive programming guidance. Its intuitive understanding of coding languages and constructs makes it an invaluable asset for any coding project, helping to reduce development time and improve code quality.
## Importing necessary libraries from transformers
```
from transformers import AutoTokenizer, AutoModelForCausalLM
```
## Initialize the tokenizer and model
```
tokenizer = AutoTokenizer.from_pretrained("senseable/33x-coder")
model = AutoModelForCausalLM.from_pretrained("senseable/33x-coder").cuda()
```
# User's request for a quick sort algorithm in Python
```
messages = [
{'role': 'user', 'content': "Write a Python function to check if a number is prime."}
]
```
## Preparing the input for the model by encoding the messages and sending them to the same device as the model
```
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
```
## Generating responses from the model with specific parameters for text generation
```
outputs = model.generate(
inputs,
max_new_tokens=512, # Maximum number of new tokens to generate
do_sample=False, # Disable random sampling to get the most likely next token
top_k=50, # The number of highest probability vocabulary tokens to keep for top-k-filtering
top_p=0.95, # Nucleus sampling: keeps the top p probability mass worth of tokens
num_return_sequences=1, # The number of independently computed returned sequences for each element in the batch
eos_token_id=32021, # End of sequence token id
add_generation_prompt=True
)
```
## Decoding and printing the generated response
```
start_index = len(inputs[0])
generated_output_tokens = outputs[0][start_index:]
decoded_output = tokenizer.decode(generated_output_tokens, skip_special_tokens=True)
print("Generated Code:\n", decoded_output)
```
---
license: apache-2.0
---
|