import logging from datasets import load_dataset, Dataset from sentence_transformers import ( SentenceTransformer, SentenceTransformerTrainer, SentenceTransformerTrainingArguments, SentenceTransformerModelCardData, ) from sentence_transformers.losses import MultipleNegativesRankingLoss from sentence_transformers.training_args import BatchSamplers from sentence_transformers.evaluation import NanoBEIREvaluator from peft import LoraConfig, TaskType logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO ) # 1. Load a model to finetune with 2. (Optional) model card data model = SentenceTransformer( "sentence-transformers-testing/stsb-bert-tiny-safetensors", model_card_data=SentenceTransformerModelCardData( language="en", license="apache-2.0", model_name="stsb-bert-tiny adapter finetuned on GooAQ pairs", ), ) # Apply a PEFT Adapter peft_config = LoraConfig( task_type=TaskType.FEATURE_EXTRACTION, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1, ) model.add_adapter(peft_config, "dense") # 3. Load a dataset to finetune on dataset = load_dataset("sentence-transformers/gooaq", split="train") dataset_dict = dataset.train_test_split(test_size=10_000, seed=12) train_dataset: Dataset = dataset_dict["train"].select(range(1_000_000)) eval_dataset: Dataset = dataset_dict["test"] # 4. Define a loss function loss = MultipleNegativesRankingLoss(model) # 5. (Optional) Specify training arguments run_name = "stsb-bert-tiny-base-gooaq-peft" args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=f"models/{run_name}", # Optional training parameters: num_train_epochs=1, per_device_train_batch_size=1024, per_device_eval_batch_size=1024, learning_rate=2e-5, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=25, logging_first_step=True, run_name=run_name, # Will be used in W&B if `wandb` is installed ) # 6. (Optional) Create an evaluator & evaluate the base model # The full corpus, but only the evaluation queries dev_evaluator = NanoBEIREvaluator(batch_size=1024) dev_evaluator(model) # 7. Create a trainer & train trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_evaluator, ) trainer.train() # (Optional) Evaluate the trained model on the evaluator after training dev_evaluator(model) # 8. Save the trained model model.save_pretrained(f"models/{run_name}/final") # 9. (Optional) Push it to the Hugging Face Hub model.push_to_hub("sentence-transformers-testing/stsb-bert-tiny-lora", private=True)