Add new SentenceTransformer model.
Browse files- README.md +8 -7
- config.json +1 -1
- config_sentence_transformers.json +1 -1
- model.safetensors +1 -1
- tokenizer_config.json +42 -0
README.md
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
---
|
|
|
2 |
pipeline_tag: sentence-similarity
|
3 |
tags:
|
4 |
- sentence-transformers
|
@@ -8,7 +9,7 @@ tags:
|
|
8 |
|
9 |
---
|
10 |
|
11 |
-
# sentence-transformers-testing/stsb-bert-tiny
|
12 |
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
@@ -28,7 +29,7 @@ Then you can use the model like this:
|
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
|
31 |
-
model = SentenceTransformer('sentence-transformers-testing/stsb-bert-tiny')
|
32 |
embeddings = model.encode(sentences)
|
33 |
print(embeddings)
|
34 |
```
|
@@ -54,8 +55,8 @@ def mean_pooling(model_output, attention_mask):
|
|
54 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
55 |
|
56 |
# Load model from HuggingFace Hub
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers-testing/stsb-bert-tiny')
|
58 |
-
model = AutoModel.from_pretrained('sentence-transformers-testing/stsb-bert-tiny')
|
59 |
|
60 |
# Tokenize sentences
|
61 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -77,7 +78,7 @@ print(sentence_embeddings)
|
|
77 |
|
78 |
<!--- Describe how your model was evaluated -->
|
79 |
|
80 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers-testing/stsb-bert-tiny)
|
81 |
|
82 |
|
83 |
## Training
|
@@ -97,13 +98,13 @@ The model was trained with the parameters:
|
|
97 |
Parameters of the fit()-Method:
|
98 |
```
|
99 |
{
|
100 |
-
"epochs":
|
101 |
"evaluation_steps": 1000,
|
102 |
"evaluator": "NoneType",
|
103 |
"max_grad_norm": 1,
|
104 |
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
105 |
"optimizer_params": {
|
106 |
-
"lr":
|
107 |
},
|
108 |
"scheduler": "WarmupLinear",
|
109 |
"steps_per_epoch": null,
|
|
|
1 |
---
|
2 |
+
library_name: sentence-transformers
|
3 |
pipeline_tag: sentence-similarity
|
4 |
tags:
|
5 |
- sentence-transformers
|
|
|
9 |
|
10 |
---
|
11 |
|
12 |
+
# sentence-transformers-testing/stsb-bert-tiny-safetensors
|
13 |
|
14 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
15 |
|
|
|
29 |
from sentence_transformers import SentenceTransformer
|
30 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
31 |
|
32 |
+
model = SentenceTransformer('sentence-transformers-testing/stsb-bert-tiny-safetensors')
|
33 |
embeddings = model.encode(sentences)
|
34 |
print(embeddings)
|
35 |
```
|
|
|
55 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
56 |
|
57 |
# Load model from HuggingFace Hub
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers-testing/stsb-bert-tiny-safetensors')
|
59 |
+
model = AutoModel.from_pretrained('sentence-transformers-testing/stsb-bert-tiny-safetensors')
|
60 |
|
61 |
# Tokenize sentences
|
62 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
78 |
|
79 |
<!--- Describe how your model was evaluated -->
|
80 |
|
81 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers-testing/stsb-bert-tiny-safetensors)
|
82 |
|
83 |
|
84 |
## Training
|
|
|
98 |
Parameters of the fit()-Method:
|
99 |
```
|
100 |
{
|
101 |
+
"epochs": 10,
|
102 |
"evaluation_steps": 1000,
|
103 |
"evaluator": "NoneType",
|
104 |
"max_grad_norm": 1,
|
105 |
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
106 |
"optimizer_params": {
|
107 |
+
"lr": 8e-05
|
108 |
},
|
109 |
"scheduler": "WarmupLinear",
|
110 |
"steps_per_epoch": null,
|
config.json
CHANGED
@@ -18,7 +18,7 @@
|
|
18 |
"pad_token_id": 0,
|
19 |
"position_embedding_type": "absolute",
|
20 |
"torch_dtype": "float32",
|
21 |
-
"transformers_version": "4.
|
22 |
"type_vocab_size": 2,
|
23 |
"use_cache": true,
|
24 |
"vocab_size": 30522
|
|
|
18 |
"pad_token_id": 0,
|
19 |
"position_embedding_type": "absolute",
|
20 |
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.36.2",
|
22 |
"type_vocab_size": 2,
|
23 |
"use_cache": true,
|
24 |
"vocab_size": 30522
|
config_sentence_transformers.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "2.2.2",
|
4 |
-
"transformers": "4.
|
5 |
"pytorch": "2.1.0+cu121"
|
6 |
}
|
7 |
}
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.36.2",
|
5 |
"pytorch": "2.1.0+cu121"
|
6 |
}
|
7 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 17547912
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b57380d8465cb456819716ab92ba12933f8e9142ae5f930ba18ca830e9333af2
|
3 |
size 17547912
|
tokenizer_config.json
CHANGED
@@ -1,4 +1,46 @@
|
|
1 |
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
"clean_up_tokenization_spaces": true,
|
3 |
"cls_token": "[CLS]",
|
4 |
"do_basic_tokenize": true,
|
|
|
1 |
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
"clean_up_tokenization_spaces": true,
|
45 |
"cls_token": "[CLS]",
|
46 |
"do_basic_tokenize": true,
|