nreimers
commited on
Commit
·
61966e1
1
Parent(s):
f84a947
Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +7 -0
- 2_Dense/config.json +1 -0
- 2_Dense/pytorch_model.bin +3 -0
- README.md +55 -20
- config.json +4 -0
- config_sentence_transformers.json +7 -0
- modules.json +26 -0
- pytorch_model.bin +2 -2
- sentence_bert_config.json +4 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -1
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 768, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Dense/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06fb85120e40adf0ab188c4f0cc7684f702cb2023532947d1b85f325b0a3645c
|
3 |
+
size 2363431
|
README.md
CHANGED
@@ -1,42 +1,77 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- sentence-transformers
|
4 |
- feature-extraction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
-
# LaBSE Pytorch Version
|
7 |
-
This is a pytorch port of the tensorflow version of [LaBSE](https://tfhub.dev/google/LaBSE/1).
|
8 |
|
9 |
-
|
10 |
-
```python
|
11 |
-
from transformers import AutoTokenizer, AutoModel
|
12 |
|
13 |
-
|
14 |
-
model = AutoModel.from_pretrained("sentence-transformers/LaBSE")
|
15 |
|
16 |
-
sentences = ["Hello World", "Hallo Welt"]
|
17 |
|
18 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=64, return_tensors='pt')
|
19 |
|
20 |
-
|
21 |
-
model_output = model(**encoded_input)
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
26 |
```
|
27 |
|
|
|
28 |
|
29 |
-
When you have [sentence-transformers](https://www.sbert.net/) installed, you can use the model like this:
|
30 |
```python
|
31 |
from sentence_transformers import SentenceTransformer
|
32 |
-
sentences = ["
|
33 |
|
34 |
-
model = SentenceTransformer('LaBSE')
|
35 |
embeddings = model.encode(sentences)
|
36 |
print(embeddings)
|
37 |
```
|
38 |
|
39 |
-
## Reference:
|
40 |
-
Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Narveen Ari, Wei Wang. [Language-agnostic BERT Sentence Embedding](https://arxiv.org/abs/2007.01852). July 2020
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
tags:
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
+
- transformers
|
9 |
+
- transformers
|
10 |
+
- transformers
|
11 |
+
- transformers
|
12 |
+
- transformers
|
13 |
+
- transformers
|
14 |
+
- transformers
|
15 |
---
|
|
|
|
|
16 |
|
17 |
+
# sentence-transformers/LaBSE
|
|
|
|
|
18 |
|
19 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
|
|
20 |
|
|
|
21 |
|
|
|
22 |
|
23 |
+
## Usage (Sentence-Transformers)
|
|
|
24 |
|
25 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
26 |
+
|
27 |
+
```
|
28 |
+
pip install -U sentence-transformers
|
29 |
```
|
30 |
|
31 |
+
Then you can use the model like this:
|
32 |
|
|
|
33 |
```python
|
34 |
from sentence_transformers import SentenceTransformer
|
35 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
36 |
|
37 |
+
model = SentenceTransformer('sentence-transformers/LaBSE')
|
38 |
embeddings = model.encode(sentences)
|
39 |
print(embeddings)
|
40 |
```
|
41 |
|
|
|
|
|
42 |
|
43 |
+
|
44 |
+
## Evaluation Results
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/LaBSE)
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
## Full Model Architecture
|
53 |
+
```
|
54 |
+
SentenceTransformer(
|
55 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
56 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
57 |
+
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
58 |
+
(3): Normalize()
|
59 |
+
)
|
60 |
+
```
|
61 |
+
|
62 |
+
## Citing & Authors
|
63 |
+
|
64 |
+
This model was trained by [sentence-transformers](https://www.sbert.net/).
|
65 |
+
|
66 |
+
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
|
67 |
+
```bibtex
|
68 |
+
@inproceedings{reimers-2019-sentence-bert,
|
69 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
70 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
71 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
72 |
+
month = "11",
|
73 |
+
year = "2019",
|
74 |
+
publisher = "Association for Computational Linguistics",
|
75 |
+
url = "http://arxiv.org/abs/1908.10084",
|
76 |
+
}
|
77 |
+
```
|
config.json
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
{
|
|
|
2 |
"architectures": [
|
3 |
"BertModel"
|
4 |
],
|
@@ -21,6 +22,9 @@
|
|
21 |
"pooler_num_fc_layers": 3,
|
22 |
"pooler_size_per_head": 128,
|
23 |
"pooler_type": "first_token_transform",
|
|
|
|
|
24 |
"type_vocab_size": 2,
|
|
|
25 |
"vocab_size": 501153
|
26 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "old_models/LaBSE/0_Transformer",
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
|
|
22 |
"pooler_num_fc_layers": 3,
|
23 |
"pooler_size_per_head": 128,
|
24 |
"pooler_type": "first_token_transform",
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"transformers_version": "4.7.0",
|
27 |
"type_vocab_size": 2,
|
28 |
+
"use_cache": true,
|
29 |
"vocab_size": 501153
|
30 |
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
}
|
7 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"idx": 3,
|
22 |
+
"name": "3",
|
23 |
+
"path": "3_Normalize",
|
24 |
+
"type": "sentence_transformers.models.Normalize"
|
25 |
+
}
|
26 |
+
]
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9e7daf739f87c2168a6d1baffdae5782eceb03eb6de61950284a925234c6865
|
3 |
+
size 1883785969
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"do_lower_case": false, "model_max_length": 512}
|
|
|
1 |
+
{"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": "labse-pytorch/special_tokens_map.json", "full_tokenizer_file": null, "name_or_path": "old_models/LaBSE/0_Transformer", "do_basic_tokenize": true, "never_split": null}
|