nreimers commited on
Commit
e4d3788
·
1 Parent(s): 28f3bfb
Files changed (1) hide show
  1. README.md +6 -4
README.md CHANGED
@@ -7,7 +7,7 @@ tags:
7
  - transformers
8
  ---
9
 
10
- # msmarco-distilbert-base-dot-v4
11
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and was designed for **semantic search**. It has been trained on 500K (query, answer) pairs from the [MS MARCO dataset](https://github.com/microsoft/MSMARCO-Passage-Ranking/). For an introduction to semantic search, have a look at: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html)
12
 
13
 
@@ -26,7 +26,7 @@ query = "How many people live in London?"
26
  docs = ["Around 9 Million people live in London", "London is known for its financial district"]
27
 
28
  #Load the model
29
- model = SentenceTransformer('sentence-transformers/msmarco-distilbert-base-dot-v4')
30
 
31
  #Encode query and documents
32
  query_emb = model.encode(query)
@@ -42,6 +42,7 @@ doc_score_pairs = list(zip(docs, scores))
42
  doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
43
 
44
  #Output passages & scores
 
45
  for doc, score in doc_score_pairs:
46
  print(score, doc)
47
  ```
@@ -81,8 +82,8 @@ query = "How many people live in London?"
81
  docs = ["Around 9 Million people live in London", "London is known for its financial district"]
82
 
83
  # Load model from HuggingFace Hub
84
- tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/msmarco-distilbert-base-dot-v4")
85
- model = AutoModel.from_pretrained("sentence-transformers/msmarco-distilbert-base-dot-v4")
86
 
87
  #Encode query and docs
88
  query_emb = encode(query)
@@ -98,6 +99,7 @@ doc_score_pairs = list(zip(docs, scores))
98
  doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
99
 
100
  #Output passages & scores
 
101
  for doc, score in doc_score_pairs:
102
  print(score, doc)
103
  ```
 
7
  - transformers
8
  ---
9
 
10
+ # msmarco-distilbert-dot-v4
11
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and was designed for **semantic search**. It has been trained on 500K (query, answer) pairs from the [MS MARCO dataset](https://github.com/microsoft/MSMARCO-Passage-Ranking/). For an introduction to semantic search, have a look at: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html)
12
 
13
 
 
26
  docs = ["Around 9 Million people live in London", "London is known for its financial district"]
27
 
28
  #Load the model
29
+ model = SentenceTransformer('sentence-transformers/msmarco-distilbert-dot-v4')
30
 
31
  #Encode query and documents
32
  query_emb = model.encode(query)
 
42
  doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
43
 
44
  #Output passages & scores
45
+ print("Query:", query)
46
  for doc, score in doc_score_pairs:
47
  print(score, doc)
48
  ```
 
82
  docs = ["Around 9 Million people live in London", "London is known for its financial district"]
83
 
84
  # Load model from HuggingFace Hub
85
+ tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/msmarco-distilbert-dot-v4")
86
+ model = AutoModel.from_pretrained("sentence-transformers/msmarco-distilbert-dot-v4")
87
 
88
  #Encode query and docs
89
  query_emb = encode(query)
 
99
  doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
100
 
101
  #Output passages & scores
102
+ print("Query:", query)
103
  for doc, score in doc_score_pairs:
104
  print(score, doc)
105
  ```