jionglin
commited on
Commit
·
25f899b
1
Parent(s):
1e43f11
commit modelcard
Browse files
README.md
CHANGED
@@ -1,6 +1,1207 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
-
|
4 |
-
|
5 |
-
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
```yaml
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
model-index:
|
5 |
+
- name: jionglin-embedding
|
6 |
+
results:
|
7 |
+
- task:
|
8 |
+
type: STS
|
9 |
+
dataset:
|
10 |
+
type: C-MTEB/AFQMC
|
11 |
+
name: MTEB AFQMC
|
12 |
+
config: default
|
13 |
+
split: validation
|
14 |
+
revision: b44c3b011063adb25877c13823db83bb193913c4
|
15 |
+
metrics:
|
16 |
+
- type: cos_sim_pearson
|
17 |
+
value: 53.66919706568301
|
18 |
+
- type: cos_sim_spearman
|
19 |
+
value: 53.84074348656974
|
20 |
+
- type: euclidean_pearson
|
21 |
+
value: 53.58226184439896
|
22 |
+
- type: euclidean_spearman
|
23 |
+
value: 53.84074348656974
|
24 |
+
- type: manhattan_pearson
|
25 |
+
value: 53.64565834381205
|
26 |
+
- type: manhattan_spearman
|
27 |
+
value: 53.75526003581371
|
28 |
+
- task:
|
29 |
+
type: STS
|
30 |
+
dataset:
|
31 |
+
type: C-MTEB/ATEC
|
32 |
+
name: MTEB ATEC
|
33 |
+
config: default
|
34 |
+
split: test
|
35 |
+
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
|
36 |
+
metrics:
|
37 |
+
- type: cos_sim_pearson
|
38 |
+
value: 58.123744893539495
|
39 |
+
- type: cos_sim_spearman
|
40 |
+
value: 54.44277675493291
|
41 |
+
- type: euclidean_pearson
|
42 |
+
value: 61.20550691770944
|
43 |
+
- type: euclidean_spearman
|
44 |
+
value: 54.44277225170509
|
45 |
+
- type: manhattan_pearson
|
46 |
+
value: 60.57835645653918
|
47 |
+
- type: manhattan_spearman
|
48 |
+
value: 54.46153709699013
|
49 |
+
- task:
|
50 |
+
type: Classification
|
51 |
+
dataset:
|
52 |
+
type: mteb/amazon_reviews_multi
|
53 |
+
name: MTEB AmazonReviewsClassification (zh)
|
54 |
+
config: zh
|
55 |
+
split: test
|
56 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
57 |
+
metrics:
|
58 |
+
- type: accuracy
|
59 |
+
value: 29.746
|
60 |
+
- type: f1
|
61 |
+
value: 29.039321522193585
|
62 |
+
- task:
|
63 |
+
type: STS
|
64 |
+
dataset:
|
65 |
+
type: C-MTEB/BQ
|
66 |
+
name: MTEB BQ
|
67 |
+
config: default
|
68 |
+
split: test
|
69 |
+
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
|
70 |
+
metrics:
|
71 |
+
- type: cos_sim_pearson
|
72 |
+
value: 70.7026320728244
|
73 |
+
- type: cos_sim_spearman
|
74 |
+
value: 70.57218534128499
|
75 |
+
- type: euclidean_pearson
|
76 |
+
value: 69.28488221289881
|
77 |
+
- type: euclidean_spearman
|
78 |
+
value: 70.57218534192015
|
79 |
+
- type: manhattan_pearson
|
80 |
+
value: 69.65344674392082
|
81 |
+
- type: manhattan_spearman
|
82 |
+
value: 70.64136691477553
|
83 |
+
- task:
|
84 |
+
type: Clustering
|
85 |
+
dataset:
|
86 |
+
type: C-MTEB/CLSClusteringP2P
|
87 |
+
name: MTEB CLSClusteringP2P
|
88 |
+
config: default
|
89 |
+
split: test
|
90 |
+
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
|
91 |
+
metrics:
|
92 |
+
- type: v_measure
|
93 |
+
value: 38.87791994762536
|
94 |
+
- task:
|
95 |
+
type: Clustering
|
96 |
+
dataset:
|
97 |
+
type: C-MTEB/CLSClusteringS2S
|
98 |
+
name: MTEB CLSClusteringS2S
|
99 |
+
config: default
|
100 |
+
split: test
|
101 |
+
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
|
102 |
+
metrics:
|
103 |
+
- type: v_measure
|
104 |
+
value: 39.09103599244803
|
105 |
+
- task:
|
106 |
+
type: Reranking
|
107 |
+
dataset:
|
108 |
+
type: C-MTEB/CMedQAv1-reranking
|
109 |
+
name: MTEB CMedQAv1
|
110 |
+
config: default
|
111 |
+
split: test
|
112 |
+
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
|
113 |
+
metrics:
|
114 |
+
- type: map
|
115 |
+
value: 80.40249793910444
|
116 |
+
- type: mrr
|
117 |
+
value: 82.96805555555555
|
118 |
+
- task:
|
119 |
+
type: Reranking
|
120 |
+
dataset:
|
121 |
+
type: C-MTEB/CMedQAv2-reranking
|
122 |
+
name: MTEB CMedQAv2
|
123 |
+
config: default
|
124 |
+
split: test
|
125 |
+
revision: 23d186750531a14a0357ca22cd92d712fd512ea0
|
126 |
+
metrics:
|
127 |
+
- type: map
|
128 |
+
value: 80.39046823499085
|
129 |
+
- type: mrr
|
130 |
+
value: 83.22674603174602
|
131 |
+
- task:
|
132 |
+
type: Retrieval
|
133 |
+
dataset:
|
134 |
+
type: C-MTEB/CmedqaRetrieval
|
135 |
+
name: MTEB CmedqaRetrieval
|
136 |
+
config: default
|
137 |
+
split: dev
|
138 |
+
revision: None
|
139 |
+
metrics:
|
140 |
+
- type: map_at_1
|
141 |
+
value: 15.715000000000002
|
142 |
+
- type: map_at_10
|
143 |
+
value: 24.651
|
144 |
+
- type: map_at_100
|
145 |
+
value: 26.478
|
146 |
+
- type: map_at_1000
|
147 |
+
value: 26.648
|
148 |
+
- type: map_at_3
|
149 |
+
value: 21.410999999999998
|
150 |
+
- type: map_at_5
|
151 |
+
value: 23.233
|
152 |
+
- type: mrr_at_1
|
153 |
+
value: 24.806
|
154 |
+
- type: mrr_at_10
|
155 |
+
value: 32.336
|
156 |
+
- type: mrr_at_100
|
157 |
+
value: 33.493
|
158 |
+
- type: mrr_at_1000
|
159 |
+
value: 33.568999999999996
|
160 |
+
- type: mrr_at_3
|
161 |
+
value: 29.807
|
162 |
+
- type: mrr_at_5
|
163 |
+
value: 31.294
|
164 |
+
- type: ndcg_at_1
|
165 |
+
value: 24.806
|
166 |
+
- type: ndcg_at_10
|
167 |
+
value: 30.341
|
168 |
+
- type: ndcg_at_100
|
169 |
+
value: 38.329
|
170 |
+
- type: ndcg_at_1000
|
171 |
+
value: 41.601
|
172 |
+
- type: ndcg_at_3
|
173 |
+
value: 25.655
|
174 |
+
- type: ndcg_at_5
|
175 |
+
value: 27.758
|
176 |
+
- type: precision_at_1
|
177 |
+
value: 24.806
|
178 |
+
- type: precision_at_10
|
179 |
+
value: 7.119000000000001
|
180 |
+
- type: precision_at_100
|
181 |
+
value: 1.3679999999999999
|
182 |
+
- type: precision_at_1000
|
183 |
+
value: 0.179
|
184 |
+
- type: precision_at_3
|
185 |
+
value: 14.787
|
186 |
+
- type: precision_at_5
|
187 |
+
value: 11.208
|
188 |
+
- type: recall_at_1
|
189 |
+
value: 15.715000000000002
|
190 |
+
- type: recall_at_10
|
191 |
+
value: 39.519999999999996
|
192 |
+
- type: recall_at_100
|
193 |
+
value: 73.307
|
194 |
+
- type: recall_at_1000
|
195 |
+
value: 95.611
|
196 |
+
- type: recall_at_3
|
197 |
+
value: 26.026
|
198 |
+
- type: recall_at_5
|
199 |
+
value: 32.027
|
200 |
+
- task:
|
201 |
+
type: PairClassification
|
202 |
+
dataset:
|
203 |
+
type: C-MTEB/CMNLI
|
204 |
+
name: MTEB Cmnli
|
205 |
+
config: default
|
206 |
+
split: validation
|
207 |
+
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
|
208 |
+
metrics:
|
209 |
+
- type: cos_sim_accuracy
|
210 |
+
value: 66.89116055321708
|
211 |
+
- type: cos_sim_ap
|
212 |
+
value: 75.66575745519994
|
213 |
+
- type: cos_sim_f1
|
214 |
+
value: 70.2448775612194
|
215 |
+
- type: cos_sim_precision
|
216 |
+
value: 61.347765363128495
|
217 |
+
- type: cos_sim_recall
|
218 |
+
value: 82.16039279869068
|
219 |
+
- type: dot_accuracy
|
220 |
+
value: 66.89116055321708
|
221 |
+
- type: dot_ap
|
222 |
+
value: 75.68262052264197
|
223 |
+
- type: dot_f1
|
224 |
+
value: 70.2448775612194
|
225 |
+
- type: dot_precision
|
226 |
+
value: 61.347765363128495
|
227 |
+
- type: dot_recall
|
228 |
+
value: 82.16039279869068
|
229 |
+
- type: euclidean_accuracy
|
230 |
+
value: 66.89116055321708
|
231 |
+
- type: euclidean_ap
|
232 |
+
value: 75.66576722188334
|
233 |
+
- type: euclidean_f1
|
234 |
+
value: 70.2448775612194
|
235 |
+
- type: euclidean_precision
|
236 |
+
value: 61.347765363128495
|
237 |
+
- type: euclidean_recall
|
238 |
+
value: 82.16039279869068
|
239 |
+
- type: manhattan_accuracy
|
240 |
+
value: 67.03547805171377
|
241 |
+
- type: manhattan_ap
|
242 |
+
value: 75.78816934864089
|
243 |
+
- type: manhattan_f1
|
244 |
+
value: 70.35407081416284
|
245 |
+
- type: manhattan_precision
|
246 |
+
value: 61.4752665617899
|
247 |
+
- type: manhattan_recall
|
248 |
+
value: 82.23053542202479
|
249 |
+
- type: max_accuracy
|
250 |
+
value: 67.03547805171377
|
251 |
+
- type: max_ap
|
252 |
+
value: 75.78816934864089
|
253 |
+
- type: max_f1
|
254 |
+
value: 70.35407081416284
|
255 |
+
- task:
|
256 |
+
type: Retrieval
|
257 |
+
dataset:
|
258 |
+
type: C-MTEB/CovidRetrieval
|
259 |
+
name: MTEB CovidRetrieval
|
260 |
+
config: default
|
261 |
+
split: dev
|
262 |
+
revision: None
|
263 |
+
metrics:
|
264 |
+
- type: map_at_1
|
265 |
+
value: 41.57
|
266 |
+
- type: map_at_10
|
267 |
+
value: 52.932
|
268 |
+
- type: map_at_100
|
269 |
+
value: 53.581999999999994
|
270 |
+
- type: map_at_1000
|
271 |
+
value: 53.61900000000001
|
272 |
+
- type: map_at_3
|
273 |
+
value: 50.066
|
274 |
+
- type: map_at_5
|
275 |
+
value: 51.735
|
276 |
+
- type: mrr_at_1
|
277 |
+
value: 41.623
|
278 |
+
- type: mrr_at_10
|
279 |
+
value: 52.964999999999996
|
280 |
+
- type: mrr_at_100
|
281 |
+
value: 53.6
|
282 |
+
- type: mrr_at_1000
|
283 |
+
value: 53.637
|
284 |
+
- type: mrr_at_3
|
285 |
+
value: 50.158
|
286 |
+
- type: mrr_at_5
|
287 |
+
value: 51.786
|
288 |
+
- type: ndcg_at_1
|
289 |
+
value: 41.623
|
290 |
+
- type: ndcg_at_10
|
291 |
+
value: 58.55200000000001
|
292 |
+
- type: ndcg_at_100
|
293 |
+
value: 61.824999999999996
|
294 |
+
- type: ndcg_at_1000
|
295 |
+
value: 62.854
|
296 |
+
- type: ndcg_at_3
|
297 |
+
value: 52.729000000000006
|
298 |
+
- type: ndcg_at_5
|
299 |
+
value: 55.696999999999996
|
300 |
+
- type: precision_at_1
|
301 |
+
value: 41.623
|
302 |
+
- type: precision_at_10
|
303 |
+
value: 7.692
|
304 |
+
- type: precision_at_100
|
305 |
+
value: 0.927
|
306 |
+
- type: precision_at_1000
|
307 |
+
value: 0.101
|
308 |
+
- type: precision_at_3
|
309 |
+
value: 20.162
|
310 |
+
- type: precision_at_5
|
311 |
+
value: 13.572000000000001
|
312 |
+
- type: recall_at_1
|
313 |
+
value: 41.57
|
314 |
+
- type: recall_at_10
|
315 |
+
value: 76.185
|
316 |
+
- type: recall_at_100
|
317 |
+
value: 91.728
|
318 |
+
- type: recall_at_1000
|
319 |
+
value: 99.895
|
320 |
+
- type: recall_at_3
|
321 |
+
value: 60.27400000000001
|
322 |
+
- type: recall_at_5
|
323 |
+
value: 67.46600000000001
|
324 |
+
- task:
|
325 |
+
type: Retrieval
|
326 |
+
dataset:
|
327 |
+
type: C-MTEB/DuRetrieval
|
328 |
+
name: MTEB DuRetrieval
|
329 |
+
config: default
|
330 |
+
split: dev
|
331 |
+
revision: None
|
332 |
+
metrics:
|
333 |
+
- type: map_at_1
|
334 |
+
value: 21.071
|
335 |
+
- type: map_at_10
|
336 |
+
value: 65.093
|
337 |
+
- type: map_at_100
|
338 |
+
value: 69.097
|
339 |
+
- type: map_at_1000
|
340 |
+
value: 69.172
|
341 |
+
- type: map_at_3
|
342 |
+
value: 44.568000000000005
|
343 |
+
- type: map_at_5
|
344 |
+
value: 56.016999999999996
|
345 |
+
- type: mrr_at_1
|
346 |
+
value: 76.35
|
347 |
+
- type: mrr_at_10
|
348 |
+
value: 83.721
|
349 |
+
- type: mrr_at_100
|
350 |
+
value: 83.899
|
351 |
+
- type: mrr_at_1000
|
352 |
+
value: 83.904
|
353 |
+
- type: mrr_at_3
|
354 |
+
value: 82.958
|
355 |
+
- type: mrr_at_5
|
356 |
+
value: 83.488
|
357 |
+
- type: ndcg_at_1
|
358 |
+
value: 76.35
|
359 |
+
- type: ndcg_at_10
|
360 |
+
value: 75.05199999999999
|
361 |
+
- type: ndcg_at_100
|
362 |
+
value: 80.596
|
363 |
+
- type: ndcg_at_1000
|
364 |
+
value: 81.394
|
365 |
+
- type: ndcg_at_3
|
366 |
+
value: 73.298
|
367 |
+
- type: ndcg_at_5
|
368 |
+
value: 72.149
|
369 |
+
- type: precision_at_1
|
370 |
+
value: 76.35
|
371 |
+
- type: precision_at_10
|
372 |
+
value: 36.96
|
373 |
+
- type: precision_at_100
|
374 |
+
value: 4.688
|
375 |
+
- type: precision_at_1000
|
376 |
+
value: 0.48700000000000004
|
377 |
+
- type: precision_at_3
|
378 |
+
value: 66.2
|
379 |
+
- type: precision_at_5
|
380 |
+
value: 55.81
|
381 |
+
- type: recall_at_1
|
382 |
+
value: 21.071
|
383 |
+
- type: recall_at_10
|
384 |
+
value: 77.459
|
385 |
+
- type: recall_at_100
|
386 |
+
value: 94.425
|
387 |
+
- type: recall_at_1000
|
388 |
+
value: 98.631
|
389 |
+
- type: recall_at_3
|
390 |
+
value: 48.335
|
391 |
+
- type: recall_at_5
|
392 |
+
value: 63.227999999999994
|
393 |
+
- task:
|
394 |
+
type: Retrieval
|
395 |
+
dataset:
|
396 |
+
type: C-MTEB/EcomRetrieval
|
397 |
+
name: MTEB EcomRetrieval
|
398 |
+
config: default
|
399 |
+
split: dev
|
400 |
+
revision: None
|
401 |
+
metrics:
|
402 |
+
- type: map_at_1
|
403 |
+
value: 36.3
|
404 |
+
- type: map_at_10
|
405 |
+
value: 46.888999999999996
|
406 |
+
- type: map_at_100
|
407 |
+
value: 47.789
|
408 |
+
- type: map_at_1000
|
409 |
+
value: 47.827999999999996
|
410 |
+
- type: map_at_3
|
411 |
+
value: 43.85
|
412 |
+
- type: map_at_5
|
413 |
+
value: 45.58
|
414 |
+
- type: mrr_at_1
|
415 |
+
value: 36.3
|
416 |
+
- type: mrr_at_10
|
417 |
+
value: 46.888999999999996
|
418 |
+
- type: mrr_at_100
|
419 |
+
value: 47.789
|
420 |
+
- type: mrr_at_1000
|
421 |
+
value: 47.827999999999996
|
422 |
+
- type: mrr_at_3
|
423 |
+
value: 43.85
|
424 |
+
- type: mrr_at_5
|
425 |
+
value: 45.58
|
426 |
+
- type: ndcg_at_1
|
427 |
+
value: 36.3
|
428 |
+
- type: ndcg_at_10
|
429 |
+
value: 52.539
|
430 |
+
- type: ndcg_at_100
|
431 |
+
value: 56.882
|
432 |
+
- type: ndcg_at_1000
|
433 |
+
value: 57.841
|
434 |
+
- type: ndcg_at_3
|
435 |
+
value: 46.303
|
436 |
+
- type: ndcg_at_5
|
437 |
+
value: 49.406
|
438 |
+
- type: precision_at_1
|
439 |
+
value: 36.3
|
440 |
+
- type: precision_at_10
|
441 |
+
value: 7.049999999999999
|
442 |
+
- type: precision_at_100
|
443 |
+
value: 0.907
|
444 |
+
- type: precision_at_1000
|
445 |
+
value: 0.098
|
446 |
+
- type: precision_at_3
|
447 |
+
value: 17.8
|
448 |
+
- type: precision_at_5
|
449 |
+
value: 12.18
|
450 |
+
- type: recall_at_1
|
451 |
+
value: 36.3
|
452 |
+
- type: recall_at_10
|
453 |
+
value: 70.5
|
454 |
+
- type: recall_at_100
|
455 |
+
value: 90.7
|
456 |
+
- type: recall_at_1000
|
457 |
+
value: 98.1
|
458 |
+
- type: recall_at_3
|
459 |
+
value: 53.400000000000006
|
460 |
+
- type: recall_at_5
|
461 |
+
value: 60.9
|
462 |
+
- task:
|
463 |
+
type: Classification
|
464 |
+
dataset:
|
465 |
+
type: C-MTEB/IFlyTek-classification
|
466 |
+
name: MTEB IFlyTek
|
467 |
+
config: default
|
468 |
+
split: validation
|
469 |
+
revision: 421605374b29664c5fc098418fe20ada9bd55f8a
|
470 |
+
metrics:
|
471 |
+
- type: accuracy
|
472 |
+
value: 50.927279722970376
|
473 |
+
- type: f1
|
474 |
+
value: 39.57514582425314
|
475 |
+
- task:
|
476 |
+
type: Classification
|
477 |
+
dataset:
|
478 |
+
type: C-MTEB/JDReview-classification
|
479 |
+
name: MTEB JDReview
|
480 |
+
config: default
|
481 |
+
split: test
|
482 |
+
revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
|
483 |
+
metrics:
|
484 |
+
- type: accuracy
|
485 |
+
value: 84.93433395872421
|
486 |
+
- type: ap
|
487 |
+
value: 50.35046267230439
|
488 |
+
- type: f1
|
489 |
+
value: 78.76452515604298
|
490 |
+
- task:
|
491 |
+
type: STS
|
492 |
+
dataset:
|
493 |
+
type: C-MTEB/LCQMC
|
494 |
+
name: MTEB LCQMC
|
495 |
+
config: default
|
496 |
+
split: test
|
497 |
+
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
|
498 |
+
metrics:
|
499 |
+
- type: cos_sim_pearson
|
500 |
+
value: 67.40319768112933
|
501 |
+
- type: cos_sim_spearman
|
502 |
+
value: 74.9867527749418
|
503 |
+
- type: euclidean_pearson
|
504 |
+
value: 74.08762625643878
|
505 |
+
- type: euclidean_spearman
|
506 |
+
value: 74.98675720634276
|
507 |
+
- type: manhattan_pearson
|
508 |
+
value: 73.86303861791671
|
509 |
+
- type: manhattan_spearman
|
510 |
+
value: 75.0594224188492
|
511 |
+
- task:
|
512 |
+
type: Reranking
|
513 |
+
dataset:
|
514 |
+
type: C-MTEB/Mmarco-reranking
|
515 |
+
name: MTEB MMarcoReranking
|
516 |
+
config: default
|
517 |
+
split: dev
|
518 |
+
revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
|
519 |
+
metrics:
|
520 |
+
- type: map
|
521 |
+
value: 18.860945903258536
|
522 |
+
- type: mrr
|
523 |
+
value: 17.686507936507937
|
524 |
+
- task:
|
525 |
+
type: Retrieval
|
526 |
+
dataset:
|
527 |
+
type: C-MTEB/MMarcoRetrieval
|
528 |
+
name: MTEB MMarcoRetrieval
|
529 |
+
config: default
|
530 |
+
split: dev
|
531 |
+
revision: None
|
532 |
+
metrics:
|
533 |
+
- type: map_at_1
|
534 |
+
value: 49.16
|
535 |
+
- type: map_at_10
|
536 |
+
value: 57.992
|
537 |
+
- type: map_at_100
|
538 |
+
value: 58.638
|
539 |
+
- type: map_at_1000
|
540 |
+
value: 58.67
|
541 |
+
- type: map_at_3
|
542 |
+
value: 55.71
|
543 |
+
- type: map_at_5
|
544 |
+
value: 57.04900000000001
|
545 |
+
- type: mrr_at_1
|
546 |
+
value: 50.989
|
547 |
+
- type: mrr_at_10
|
548 |
+
value: 58.814
|
549 |
+
- type: mrr_at_100
|
550 |
+
value: 59.401
|
551 |
+
- type: mrr_at_1000
|
552 |
+
value: 59.431
|
553 |
+
- type: mrr_at_3
|
554 |
+
value: 56.726
|
555 |
+
- type: mrr_at_5
|
556 |
+
value: 57.955
|
557 |
+
- type: ndcg_at_1
|
558 |
+
value: 50.989
|
559 |
+
- type: ndcg_at_10
|
560 |
+
value: 62.259
|
561 |
+
- type: ndcg_at_100
|
562 |
+
value: 65.347
|
563 |
+
- type: ndcg_at_1000
|
564 |
+
value: 66.231
|
565 |
+
- type: ndcg_at_3
|
566 |
+
value: 57.78
|
567 |
+
- type: ndcg_at_5
|
568 |
+
value: 60.09100000000001
|
569 |
+
- type: precision_at_1
|
570 |
+
value: 50.989
|
571 |
+
- type: precision_at_10
|
572 |
+
value: 7.9479999999999995
|
573 |
+
- type: precision_at_100
|
574 |
+
value: 0.951
|
575 |
+
- type: precision_at_1000
|
576 |
+
value: 0.10200000000000001
|
577 |
+
- type: precision_at_3
|
578 |
+
value: 22.087
|
579 |
+
- type: precision_at_5
|
580 |
+
value: 14.479000000000001
|
581 |
+
- type: recall_at_1
|
582 |
+
value: 49.16
|
583 |
+
- type: recall_at_10
|
584 |
+
value: 74.792
|
585 |
+
- type: recall_at_100
|
586 |
+
value: 89.132
|
587 |
+
- type: recall_at_1000
|
588 |
+
value: 96.13199999999999
|
589 |
+
- type: recall_at_3
|
590 |
+
value: 62.783
|
591 |
+
- type: recall_at_5
|
592 |
+
value: 68.26100000000001
|
593 |
+
- task:
|
594 |
+
type: Retrieval
|
595 |
+
dataset:
|
596 |
+
type: C-MTEB/MedicalRetrieval
|
597 |
+
name: MTEB MedicalRetrieval
|
598 |
+
config: default
|
599 |
+
split: dev
|
600 |
+
revision: None
|
601 |
+
metrics:
|
602 |
+
- type: map_at_1
|
603 |
+
value: 40.5
|
604 |
+
- type: map_at_10
|
605 |
+
value: 46.892
|
606 |
+
- type: map_at_100
|
607 |
+
value: 47.579
|
608 |
+
- type: map_at_1000
|
609 |
+
value: 47.648
|
610 |
+
- type: map_at_3
|
611 |
+
value: 45.367000000000004
|
612 |
+
- type: map_at_5
|
613 |
+
value: 46.182
|
614 |
+
- type: mrr_at_1
|
615 |
+
value: 40.6
|
616 |
+
- type: mrr_at_10
|
617 |
+
value: 46.942
|
618 |
+
- type: mrr_at_100
|
619 |
+
value: 47.629
|
620 |
+
- type: mrr_at_1000
|
621 |
+
value: 47.698
|
622 |
+
- type: mrr_at_3
|
623 |
+
value: 45.417
|
624 |
+
- type: mrr_at_5
|
625 |
+
value: 46.232
|
626 |
+
- type: ndcg_at_1
|
627 |
+
value: 40.5
|
628 |
+
- type: ndcg_at_10
|
629 |
+
value: 50.078
|
630 |
+
- type: ndcg_at_100
|
631 |
+
value: 53.635999999999996
|
632 |
+
- type: ndcg_at_1000
|
633 |
+
value: 55.696999999999996
|
634 |
+
- type: ndcg_at_3
|
635 |
+
value: 46.847
|
636 |
+
- type: ndcg_at_5
|
637 |
+
value: 48.323
|
638 |
+
- type: precision_at_1
|
639 |
+
value: 40.5
|
640 |
+
- type: precision_at_10
|
641 |
+
value: 6.02
|
642 |
+
- type: precision_at_100
|
643 |
+
value: 0.773
|
644 |
+
- type: precision_at_1000
|
645 |
+
value: 0.094
|
646 |
+
- type: precision_at_3
|
647 |
+
value: 17.033
|
648 |
+
- type: precision_at_5
|
649 |
+
value: 10.94
|
650 |
+
- type: recall_at_1
|
651 |
+
value: 40.5
|
652 |
+
- type: recall_at_10
|
653 |
+
value: 60.199999999999996
|
654 |
+
- type: recall_at_100
|
655 |
+
value: 77.3
|
656 |
+
- type: recall_at_1000
|
657 |
+
value: 94.0
|
658 |
+
- type: recall_at_3
|
659 |
+
value: 51.1
|
660 |
+
- type: recall_at_5
|
661 |
+
value: 54.7
|
662 |
+
- task:
|
663 |
+
type: Classification
|
664 |
+
dataset:
|
665 |
+
type: C-MTEB/MultilingualSentiment-classification
|
666 |
+
name: MTEB MultilingualSentiment
|
667 |
+
config: default
|
668 |
+
split: validation
|
669 |
+
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
|
670 |
+
metrics:
|
671 |
+
- type: accuracy
|
672 |
+
value: 55.90333333333333
|
673 |
+
- type: f1
|
674 |
+
value: 55.291185234519546
|
675 |
+
- task:
|
676 |
+
type: PairClassification
|
677 |
+
dataset:
|
678 |
+
type: C-MTEB/OCNLI
|
679 |
+
name: MTEB Ocnli
|
680 |
+
config: default
|
681 |
+
split: validation
|
682 |
+
revision: 66e76a618a34d6d565d5538088562851e6daa7ec
|
683 |
+
metrics:
|
684 |
+
- type: cos_sim_accuracy
|
685 |
+
value: 59.01461829994585
|
686 |
+
- type: cos_sim_ap
|
687 |
+
value: 61.84829541140869
|
688 |
+
- type: cos_sim_f1
|
689 |
+
value: 67.94150731158605
|
690 |
+
- type: cos_sim_precision
|
691 |
+
value: 52.674418604651166
|
692 |
+
- type: cos_sim_recall
|
693 |
+
value: 95.67053854276664
|
694 |
+
- type: dot_accuracy
|
695 |
+
value: 59.01461829994585
|
696 |
+
- type: dot_ap
|
697 |
+
value: 61.84829541140869
|
698 |
+
- type: dot_f1
|
699 |
+
value: 67.94150731158605
|
700 |
+
- type: dot_precision
|
701 |
+
value: 52.674418604651166
|
702 |
+
- type: dot_recall
|
703 |
+
value: 95.67053854276664
|
704 |
+
- type: euclidean_accuracy
|
705 |
+
value: 59.01461829994585
|
706 |
+
- type: euclidean_ap
|
707 |
+
value: 61.84829541140869
|
708 |
+
- type: euclidean_f1
|
709 |
+
value: 67.94150731158605
|
710 |
+
- type: euclidean_precision
|
711 |
+
value: 52.674418604651166
|
712 |
+
- type: euclidean_recall
|
713 |
+
value: 95.67053854276664
|
714 |
+
- type: manhattan_accuracy
|
715 |
+
value: 59.06876015159719
|
716 |
+
- type: manhattan_ap
|
717 |
+
value: 61.91217952354554
|
718 |
+
- type: manhattan_f1
|
719 |
+
value: 67.89059572873735
|
720 |
+
- type: manhattan_precision
|
721 |
+
value: 52.613240418118465
|
722 |
+
- type: manhattan_recall
|
723 |
+
value: 95.67053854276664
|
724 |
+
- type: max_accuracy
|
725 |
+
value: 59.06876015159719
|
726 |
+
- type: max_ap
|
727 |
+
value: 61.91217952354554
|
728 |
+
- type: max_f1
|
729 |
+
value: 67.94150731158605
|
730 |
+
- task:
|
731 |
+
type: Classification
|
732 |
+
dataset:
|
733 |
+
type: C-MTEB/OnlineShopping-classification
|
734 |
+
name: MTEB OnlineShopping
|
735 |
+
config: default
|
736 |
+
split: test
|
737 |
+
revision: e610f2ebd179a8fda30ae534c3878750a96db120
|
738 |
+
metrics:
|
739 |
+
- type: accuracy
|
740 |
+
value: 82.53
|
741 |
+
- type: ap
|
742 |
+
value: 77.67591637020448
|
743 |
+
- type: f1
|
744 |
+
value: 82.39976599130478
|
745 |
+
- task:
|
746 |
+
type: STS
|
747 |
+
dataset:
|
748 |
+
type: C-MTEB/PAWSX
|
749 |
+
name: MTEB PAWSX
|
750 |
+
config: default
|
751 |
+
split: test
|
752 |
+
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
|
753 |
+
metrics:
|
754 |
+
- type: cos_sim_pearson
|
755 |
+
value: 55.76388035743312
|
756 |
+
- type: cos_sim_spearman
|
757 |
+
value: 58.34768166139753
|
758 |
+
- type: euclidean_pearson
|
759 |
+
value: 57.971763429924074
|
760 |
+
- type: euclidean_spearman
|
761 |
+
value: 58.34750745303424
|
762 |
+
- type: manhattan_pearson
|
763 |
+
value: 58.044053497280245
|
764 |
+
- type: manhattan_spearman
|
765 |
+
value: 58.61627719613188
|
766 |
+
- task:
|
767 |
+
type: PairClassification
|
768 |
+
dataset:
|
769 |
+
type: paws-x
|
770 |
+
name: MTEB PawsX (zh)
|
771 |
+
config: zh
|
772 |
+
split: test
|
773 |
+
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
|
774 |
+
metrics:
|
775 |
+
- type: cos_sim_accuracy
|
776 |
+
value: 75.75
|
777 |
+
- type: cos_sim_ap
|
778 |
+
value: 78.80617392926526
|
779 |
+
- type: cos_sim_f1
|
780 |
+
value: 75.92417061611374
|
781 |
+
- type: cos_sim_precision
|
782 |
+
value: 65.87171052631578
|
783 |
+
- type: cos_sim_recall
|
784 |
+
value: 89.59731543624162
|
785 |
+
- type: dot_accuracy
|
786 |
+
value: 75.75
|
787 |
+
- type: dot_ap
|
788 |
+
value: 78.83768586994135
|
789 |
+
- type: dot_f1
|
790 |
+
value: 75.92417061611374
|
791 |
+
- type: dot_precision
|
792 |
+
value: 65.87171052631578
|
793 |
+
- type: dot_recall
|
794 |
+
value: 89.59731543624162
|
795 |
+
- type: euclidean_accuracy
|
796 |
+
value: 75.75
|
797 |
+
- type: euclidean_ap
|
798 |
+
value: 78.80617392926526
|
799 |
+
- type: euclidean_f1
|
800 |
+
value: 75.92417061611374
|
801 |
+
- type: euclidean_precision
|
802 |
+
value: 65.87171052631578
|
803 |
+
- type: euclidean_recall
|
804 |
+
value: 89.59731543624162
|
805 |
+
- type: manhattan_accuracy
|
806 |
+
value: 75.75
|
807 |
+
- type: manhattan_ap
|
808 |
+
value: 78.98640478955386
|
809 |
+
- type: manhattan_f1
|
810 |
+
value: 75.92954990215264
|
811 |
+
- type: manhattan_precision
|
812 |
+
value: 67.47826086956522
|
813 |
+
- type: manhattan_recall
|
814 |
+
value: 86.80089485458613
|
815 |
+
- type: max_accuracy
|
816 |
+
value: 75.75
|
817 |
+
- type: max_ap
|
818 |
+
value: 78.98640478955386
|
819 |
+
- type: max_f1
|
820 |
+
value: 75.92954990215264
|
821 |
+
- task:
|
822 |
+
type: STS
|
823 |
+
dataset:
|
824 |
+
type: C-MTEB/QBQTC
|
825 |
+
name: MTEB QBQTC
|
826 |
+
config: default
|
827 |
+
split: test
|
828 |
+
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
|
829 |
+
metrics:
|
830 |
+
- type: cos_sim_pearson
|
831 |
+
value: 74.40348414238575
|
832 |
+
- type: cos_sim_spearman
|
833 |
+
value: 71.452270332177
|
834 |
+
- type: euclidean_pearson
|
835 |
+
value: 72.62509231589097
|
836 |
+
- type: euclidean_spearman
|
837 |
+
value: 71.45228258458943
|
838 |
+
- type: manhattan_pearson
|
839 |
+
value: 73.03846856200839
|
840 |
+
- type: manhattan_spearman
|
841 |
+
value: 71.43673225319574
|
842 |
+
- task:
|
843 |
+
type: STS
|
844 |
+
dataset:
|
845 |
+
type: mteb/sts22-crosslingual-sts
|
846 |
+
name: MTEB STS22 (zh)
|
847 |
+
config: zh
|
848 |
+
split: test
|
849 |
+
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
850 |
+
metrics:
|
851 |
+
- type: cos_sim_pearson
|
852 |
+
value: 75.38335474357001
|
853 |
+
- type: cos_sim_spearman
|
854 |
+
value: 74.92262892309807
|
855 |
+
- type: euclidean_pearson
|
856 |
+
value: 73.93451693251345
|
857 |
+
- type: euclidean_spearman
|
858 |
+
value: 74.92262892309807
|
859 |
+
- type: manhattan_pearson
|
860 |
+
value: 74.55911294300788
|
861 |
+
- type: manhattan_spearman
|
862 |
+
value: 74.89436791272614
|
863 |
+
- task:
|
864 |
+
type: STS
|
865 |
+
dataset:
|
866 |
+
type: C-MTEB/STSB
|
867 |
+
name: MTEB STSB
|
868 |
+
config: default
|
869 |
+
split: test
|
870 |
+
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
|
871 |
+
metrics:
|
872 |
+
- type: cos_sim_pearson
|
873 |
+
value: 83.01687361650126
|
874 |
+
- type: cos_sim_spearman
|
875 |
+
value: 82.74413230806265
|
876 |
+
- type: euclidean_pearson
|
877 |
+
value: 81.50177295189083
|
878 |
+
- type: euclidean_spearman
|
879 |
+
value: 82.74413230806265
|
880 |
+
- type: manhattan_pearson
|
881 |
+
value: 81.90798387028589
|
882 |
+
- type: manhattan_spearman
|
883 |
+
value: 82.65064251275778
|
884 |
+
- task:
|
885 |
+
type: Reranking
|
886 |
+
dataset:
|
887 |
+
type: C-MTEB/T2Reranking
|
888 |
+
name: MTEB T2Reranking
|
889 |
+
config: default
|
890 |
+
split: dev
|
891 |
+
revision: 76631901a18387f85eaa53e5450019b87ad58ef9
|
892 |
+
metrics:
|
893 |
+
- type: map
|
894 |
+
value: 66.25459669294304
|
895 |
+
- type: mrr
|
896 |
+
value: 76.76845224661744
|
897 |
+
- task:
|
898 |
+
type: Retrieval
|
899 |
+
dataset:
|
900 |
+
type: C-MTEB/T2Retrieval
|
901 |
+
name: MTEB T2Retrieval
|
902 |
+
config: default
|
903 |
+
split: dev
|
904 |
+
revision: None
|
905 |
+
metrics:
|
906 |
+
- type: map_at_1
|
907 |
+
value: 22.515
|
908 |
+
- type: map_at_10
|
909 |
+
value: 63.63999999999999
|
910 |
+
- type: map_at_100
|
911 |
+
value: 67.67
|
912 |
+
- type: map_at_1000
|
913 |
+
value: 67.792
|
914 |
+
- type: map_at_3
|
915 |
+
value: 44.239
|
916 |
+
- type: map_at_5
|
917 |
+
value: 54.54599999999999
|
918 |
+
- type: mrr_at_1
|
919 |
+
value: 79.752
|
920 |
+
- type: mrr_at_10
|
921 |
+
value: 83.525
|
922 |
+
- type: mrr_at_100
|
923 |
+
value: 83.753
|
924 |
+
- type: mrr_at_1000
|
925 |
+
value: 83.763
|
926 |
+
- type: mrr_at_3
|
927 |
+
value: 82.65599999999999
|
928 |
+
- type: mrr_at_5
|
929 |
+
value: 83.192
|
930 |
+
- type: ndcg_at_1
|
931 |
+
value: 79.752
|
932 |
+
- type: ndcg_at_10
|
933 |
+
value: 72.699
|
934 |
+
- type: ndcg_at_100
|
935 |
+
value: 78.145
|
936 |
+
- type: ndcg_at_1000
|
937 |
+
value: 79.481
|
938 |
+
- type: ndcg_at_3
|
939 |
+
value: 74.401
|
940 |
+
- type: ndcg_at_5
|
941 |
+
value: 72.684
|
942 |
+
- type: precision_at_1
|
943 |
+
value: 79.752
|
944 |
+
- type: precision_at_10
|
945 |
+
value: 37.163000000000004
|
946 |
+
- type: precision_at_100
|
947 |
+
value: 4.769
|
948 |
+
- type: precision_at_1000
|
949 |
+
value: 0.508
|
950 |
+
- type: precision_at_3
|
951 |
+
value: 65.67399999999999
|
952 |
+
- type: precision_at_5
|
953 |
+
value: 55.105000000000004
|
954 |
+
- type: recall_at_1
|
955 |
+
value: 22.515
|
956 |
+
- type: recall_at_10
|
957 |
+
value: 71.816
|
958 |
+
- type: recall_at_100
|
959 |
+
value: 89.442
|
960 |
+
- type: recall_at_1000
|
961 |
+
value: 96.344
|
962 |
+
- type: recall_at_3
|
963 |
+
value: 46.208
|
964 |
+
- type: recall_at_5
|
965 |
+
value: 58.695
|
966 |
+
- task:
|
967 |
+
type: Classification
|
968 |
+
dataset:
|
969 |
+
type: C-MTEB/TNews-classification
|
970 |
+
name: MTEB TNews
|
971 |
+
config: default
|
972 |
+
split: validation
|
973 |
+
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
|
974 |
+
metrics:
|
975 |
+
- type: accuracy
|
976 |
+
value: 55.077999999999996
|
977 |
+
- type: f1
|
978 |
+
value: 53.2447237349446
|
979 |
+
- task:
|
980 |
+
type: Clustering
|
981 |
+
dataset:
|
982 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
983 |
+
name: MTEB ThuNewsClusteringP2P
|
984 |
+
config: default
|
985 |
+
split: test
|
986 |
+
revision: 5798586b105c0434e4f0fe5e767abe619442cf93
|
987 |
+
metrics:
|
988 |
+
- type: v_measure
|
989 |
+
value: 59.50582115422618
|
990 |
+
- task:
|
991 |
+
type: Clustering
|
992 |
+
dataset:
|
993 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
994 |
+
name: MTEB ThuNewsClusteringS2S
|
995 |
+
config: default
|
996 |
+
split: test
|
997 |
+
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
|
998 |
+
metrics:
|
999 |
+
- type: v_measure
|
1000 |
+
value: 54.71907850412647
|
1001 |
+
- task:
|
1002 |
+
type: Retrieval
|
1003 |
+
dataset:
|
1004 |
+
type: C-MTEB/VideoRetrieval
|
1005 |
+
name: MTEB VideoRetrieval
|
1006 |
+
config: default
|
1007 |
+
split: dev
|
1008 |
+
revision: None
|
1009 |
+
metrics:
|
1010 |
+
- type: map_at_1
|
1011 |
+
value: 49.4
|
1012 |
+
- type: map_at_10
|
1013 |
+
value: 59.245999999999995
|
1014 |
+
- type: map_at_100
|
1015 |
+
value: 59.811
|
1016 |
+
- type: map_at_1000
|
1017 |
+
value: 59.836
|
1018 |
+
- type: map_at_3
|
1019 |
+
value: 56.733
|
1020 |
+
- type: map_at_5
|
1021 |
+
value: 58.348
|
1022 |
+
- type: mrr_at_1
|
1023 |
+
value: 49.4
|
1024 |
+
- type: mrr_at_10
|
1025 |
+
value: 59.245999999999995
|
1026 |
+
- type: mrr_at_100
|
1027 |
+
value: 59.811
|
1028 |
+
- type: mrr_at_1000
|
1029 |
+
value: 59.836
|
1030 |
+
- type: mrr_at_3
|
1031 |
+
value: 56.733
|
1032 |
+
- type: mrr_at_5
|
1033 |
+
value: 58.348
|
1034 |
+
- type: ndcg_at_1
|
1035 |
+
value: 49.4
|
1036 |
+
- type: ndcg_at_10
|
1037 |
+
value: 64.08
|
1038 |
+
- type: ndcg_at_100
|
1039 |
+
value: 67.027
|
1040 |
+
- type: ndcg_at_1000
|
1041 |
+
value: 67.697
|
1042 |
+
- type: ndcg_at_3
|
1043 |
+
value: 58.995
|
1044 |
+
- type: ndcg_at_5
|
1045 |
+
value: 61.891
|
1046 |
+
- type: precision_at_1
|
1047 |
+
value: 49.4
|
1048 |
+
- type: precision_at_10
|
1049 |
+
value: 7.93
|
1050 |
+
- type: precision_at_100
|
1051 |
+
value: 0.935
|
1052 |
+
- type: precision_at_1000
|
1053 |
+
value: 0.099
|
1054 |
+
- type: precision_at_3
|
1055 |
+
value: 21.833
|
1056 |
+
- type: precision_at_5
|
1057 |
+
value: 14.499999999999998
|
1058 |
+
- type: recall_at_1
|
1059 |
+
value: 49.4
|
1060 |
+
- type: recall_at_10
|
1061 |
+
value: 79.3
|
1062 |
+
- type: recall_at_100
|
1063 |
+
value: 93.5
|
1064 |
+
- type: recall_at_1000
|
1065 |
+
value: 98.8
|
1066 |
+
- type: recall_at_3
|
1067 |
+
value: 65.5
|
1068 |
+
- type: recall_at_5
|
1069 |
+
value: 72.5
|
1070 |
+
- task:
|
1071 |
+
type: Classification
|
1072 |
+
dataset:
|
1073 |
+
type: C-MTEB/waimai-classification
|
1074 |
+
name: MTEB Waimai
|
1075 |
+
config: default
|
1076 |
+
split: test
|
1077 |
+
revision: 339287def212450dcaa9df8c22bf93e9980c7023
|
1078 |
+
metrics:
|
1079 |
+
- type: accuracy
|
1080 |
+
value: 81.16
|
1081 |
+
- type: ap
|
1082 |
+
value: 60.864524843400616
|
1083 |
+
- type: f1
|
1084 |
+
value: 79.41246877404483
|
1085 |
+
|
1086 |
+
```
|
1087 |
+
|
1088 |
+
ZNV Embedding utilizes a 6B LLM (Large Language Model) for embedding, achieving excellent embedding results.
|
1089 |
+
|
1090 |
+
In a single inference, we used two prompts to extract two different embeddings for a sentence, and then concatenated them.
|
1091 |
+
|
1092 |
+
Model usage method:
|
1093 |
+
|
1094 |
+
|
1095 |
+
1. Define ZNVEmbeddingModel
|
1096 |
+
```python
|
1097 |
+
import os
|
1098 |
+
from transformers import (
|
1099 |
+
LlamaForCausalLM,
|
1100 |
+
LlamaTokenizer, AutoConfig,
|
1101 |
+
)
|
1102 |
+
import torch
|
1103 |
+
import torch.nn.functional as F
|
1104 |
+
import numpy as np
|
1105 |
+
|
1106 |
+
|
1107 |
+
class ZNVEmbeddingModel(torch.nn.Module):
|
1108 |
+
def __init__(self, model_name_or_path):
|
1109 |
+
super(ZNVEmbeddingModel, self).__init__()
|
1110 |
+
self.prompt_prefix = "阅读下文,然后答题\n"
|
1111 |
+
self.prompt_suffixes = ["\n1.一个字总结上文的意思是:",
|
1112 |
+
"\n2.上文深层次的意思是:"]
|
1113 |
+
self.hidden_size = 4096
|
1114 |
+
self.model_name_or_path = model_name_or_path
|
1115 |
+
self.linear_suffixes = torch.nn.ModuleList(
|
1116 |
+
[torch.nn.Linear(self.hidden_size, self.hidden_size//len(self.prompt_suffixes))
|
1117 |
+
for _ in range(len(self.prompt_suffixes))])
|
1118 |
+
self.tokenizer, self.llama = self.load_llama()
|
1119 |
+
|
1120 |
+
self.tanh = torch.nn.Tanh()
|
1121 |
+
self.suffixes_ids = []
|
1122 |
+
self.suffixes_ids_len = []
|
1123 |
+
self.suffixes_len = 0
|
1124 |
+
for suffix in self.prompt_suffixes:
|
1125 |
+
ids = self.tokenizer(suffix, return_tensors="pt")["input_ids"].tolist()[0]
|
1126 |
+
self.suffixes_ids += ids
|
1127 |
+
self.suffixes_ids_len.append(len(ids))
|
1128 |
+
self.suffixes_len += len(ids)
|
1129 |
+
|
1130 |
+
self.suffixes_ones = torch.ones(self.suffixes_len)
|
1131 |
+
self.suffixes_ids = torch.tensor(self.suffixes_ids)
|
1132 |
+
|
1133 |
+
linear_file = os.path.join(model_name_or_path, "linears")
|
1134 |
+
load_layers = torch.load(linear_file)
|
1135 |
+
model_state = self.state_dict()
|
1136 |
+
model_state.update(load_layers)
|
1137 |
+
self.load_state_dict(model_state, strict=False)
|
1138 |
+
|
1139 |
+
def load_llama(self):
|
1140 |
+
llm_path = os.path.join(self.model_name_or_path)
|
1141 |
+
config = AutoConfig.from_pretrained(llm_path)
|
1142 |
+
tokenizer = LlamaTokenizer.from_pretrained(self.model_name_or_path)
|
1143 |
+
tokenizer.padding_side = "left"
|
1144 |
+
model = LlamaForCausalLM.from_pretrained(
|
1145 |
+
llm_path,
|
1146 |
+
config=config,
|
1147 |
+
low_cpu_mem_usage=True
|
1148 |
+
)
|
1149 |
+
model.config.use_cache = False
|
1150 |
+
return tokenizer, model
|
1151 |
+
|
1152 |
+
def forward(self, sentences):
|
1153 |
+
prompts_embeddings = []
|
1154 |
+
sentences = [self.prompt_prefix + s for s in sentences]
|
1155 |
+
inputs = self.tokenizer(sentences, max_length=256, padding=True, truncation=True,
|
1156 |
+
return_tensors='pt')
|
1157 |
+
attention_mask = inputs["attention_mask"]
|
1158 |
+
input_ids = inputs["input_ids"]
|
1159 |
+
batch_size = len(sentences)
|
1160 |
+
suffixes_ones = self.suffixes_ones.unsqueeze(0)
|
1161 |
+
suffixes_ones = suffixes_ones.repeat(batch_size, 1)
|
1162 |
+
device = next(self.parameters()).device
|
1163 |
+
attention_mask = torch.cat([attention_mask, suffixes_ones], dim=-1).to(device)
|
1164 |
+
|
1165 |
+
suffixes_ids = self.suffixes_ids.unsqueeze(0)
|
1166 |
+
suffixes_ids = suffixes_ids.repeat(batch_size, 1)
|
1167 |
+
input_ids = torch.cat([input_ids, suffixes_ids], dim=-1).to(device)
|
1168 |
+
last_hidden_state = self.llama.base_model.base_model(attention_mask=attention_mask, input_ids=input_ids).last_hidden_state
|
1169 |
+
index = -1
|
1170 |
+
for i in range(len(self.suffixes_ids_len)):
|
1171 |
+
embedding = last_hidden_state[:, index, :]
|
1172 |
+
embedding = self.linear_suffixes[i](embedding)
|
1173 |
+
prompts_embeddings.append(embedding)
|
1174 |
+
index -= self.suffixes_ids_len[-i-1]
|
1175 |
+
|
1176 |
+
output_embedding = torch.cat(prompts_embeddings, dim=-1)
|
1177 |
+
output_embedding = self.tanh(output_embedding)
|
1178 |
+
output_embedding = F.normalize(output_embedding, p=2, dim=1)
|
1179 |
+
return output_embedding
|
1180 |
+
|
1181 |
+
def encode(self, sentences, batch_size=10, **kwargs):
|
1182 |
+
size = len(sentences)
|
1183 |
+
embeddings = None
|
1184 |
+
handled = 0
|
1185 |
+
while handled < size:
|
1186 |
+
tokens = sentences[handled:handled + batch_size]
|
1187 |
+
output_embeddings = self.forward(tokens)
|
1188 |
+
result = output_embeddings.cpu().numpy()
|
1189 |
+
handled += result.shape[0]
|
1190 |
+
if embeddings is not None:
|
1191 |
+
embeddings = np.concatenate((embeddings, result), axis=0)
|
1192 |
+
else:
|
1193 |
+
embeddings = result
|
1194 |
+
return embeddings
|
1195 |
+
```
|
1196 |
+
|
1197 |
+
|
1198 |
+
2. Use ZNVEmbeddingModel for Embedding.
|
1199 |
+
```python
|
1200 |
+
znv_model = ZNVEmbeddingModel("your_model_path")
|
1201 |
+
znv_model.eval()
|
1202 |
+
with torch.no_grad():
|
1203 |
+
output = znv_model(["请问你的电话号码是多少?","可以告诉我你的手机号吗?"])
|
1204 |
+
cos_sim = F.cosine_similarity(output[0],output[1],dim=0)
|
1205 |
+
print(cos_sim)
|
1206 |
+
```
|
1207 |
+
|