jionglin commited on
Commit
25f899b
·
1 Parent(s): 1e43f11

commit modelcard

Browse files
Files changed (1) hide show
  1. README.md +1207 -6
README.md CHANGED
@@ -1,6 +1,1207 @@
1
- ---
2
- datasets:
3
- - teknium/OpenHermes-2.5
4
- language:
5
- - en
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ```yaml
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: jionglin-embedding
6
+ results:
7
+ - task:
8
+ type: STS
9
+ dataset:
10
+ type: C-MTEB/AFQMC
11
+ name: MTEB AFQMC
12
+ config: default
13
+ split: validation
14
+ revision: b44c3b011063adb25877c13823db83bb193913c4
15
+ metrics:
16
+ - type: cos_sim_pearson
17
+ value: 53.66919706568301
18
+ - type: cos_sim_spearman
19
+ value: 53.84074348656974
20
+ - type: euclidean_pearson
21
+ value: 53.58226184439896
22
+ - type: euclidean_spearman
23
+ value: 53.84074348656974
24
+ - type: manhattan_pearson
25
+ value: 53.64565834381205
26
+ - type: manhattan_spearman
27
+ value: 53.75526003581371
28
+ - task:
29
+ type: STS
30
+ dataset:
31
+ type: C-MTEB/ATEC
32
+ name: MTEB ATEC
33
+ config: default
34
+ split: test
35
+ revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
36
+ metrics:
37
+ - type: cos_sim_pearson
38
+ value: 58.123744893539495
39
+ - type: cos_sim_spearman
40
+ value: 54.44277675493291
41
+ - type: euclidean_pearson
42
+ value: 61.20550691770944
43
+ - type: euclidean_spearman
44
+ value: 54.44277225170509
45
+ - type: manhattan_pearson
46
+ value: 60.57835645653918
47
+ - type: manhattan_spearman
48
+ value: 54.46153709699013
49
+ - task:
50
+ type: Classification
51
+ dataset:
52
+ type: mteb/amazon_reviews_multi
53
+ name: MTEB AmazonReviewsClassification (zh)
54
+ config: zh
55
+ split: test
56
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
57
+ metrics:
58
+ - type: accuracy
59
+ value: 29.746
60
+ - type: f1
61
+ value: 29.039321522193585
62
+ - task:
63
+ type: STS
64
+ dataset:
65
+ type: C-MTEB/BQ
66
+ name: MTEB BQ
67
+ config: default
68
+ split: test
69
+ revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
70
+ metrics:
71
+ - type: cos_sim_pearson
72
+ value: 70.7026320728244
73
+ - type: cos_sim_spearman
74
+ value: 70.57218534128499
75
+ - type: euclidean_pearson
76
+ value: 69.28488221289881
77
+ - type: euclidean_spearman
78
+ value: 70.57218534192015
79
+ - type: manhattan_pearson
80
+ value: 69.65344674392082
81
+ - type: manhattan_spearman
82
+ value: 70.64136691477553
83
+ - task:
84
+ type: Clustering
85
+ dataset:
86
+ type: C-MTEB/CLSClusteringP2P
87
+ name: MTEB CLSClusteringP2P
88
+ config: default
89
+ split: test
90
+ revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
91
+ metrics:
92
+ - type: v_measure
93
+ value: 38.87791994762536
94
+ - task:
95
+ type: Clustering
96
+ dataset:
97
+ type: C-MTEB/CLSClusteringS2S
98
+ name: MTEB CLSClusteringS2S
99
+ config: default
100
+ split: test
101
+ revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
102
+ metrics:
103
+ - type: v_measure
104
+ value: 39.09103599244803
105
+ - task:
106
+ type: Reranking
107
+ dataset:
108
+ type: C-MTEB/CMedQAv1-reranking
109
+ name: MTEB CMedQAv1
110
+ config: default
111
+ split: test
112
+ revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
113
+ metrics:
114
+ - type: map
115
+ value: 80.40249793910444
116
+ - type: mrr
117
+ value: 82.96805555555555
118
+ - task:
119
+ type: Reranking
120
+ dataset:
121
+ type: C-MTEB/CMedQAv2-reranking
122
+ name: MTEB CMedQAv2
123
+ config: default
124
+ split: test
125
+ revision: 23d186750531a14a0357ca22cd92d712fd512ea0
126
+ metrics:
127
+ - type: map
128
+ value: 80.39046823499085
129
+ - type: mrr
130
+ value: 83.22674603174602
131
+ - task:
132
+ type: Retrieval
133
+ dataset:
134
+ type: C-MTEB/CmedqaRetrieval
135
+ name: MTEB CmedqaRetrieval
136
+ config: default
137
+ split: dev
138
+ revision: None
139
+ metrics:
140
+ - type: map_at_1
141
+ value: 15.715000000000002
142
+ - type: map_at_10
143
+ value: 24.651
144
+ - type: map_at_100
145
+ value: 26.478
146
+ - type: map_at_1000
147
+ value: 26.648
148
+ - type: map_at_3
149
+ value: 21.410999999999998
150
+ - type: map_at_5
151
+ value: 23.233
152
+ - type: mrr_at_1
153
+ value: 24.806
154
+ - type: mrr_at_10
155
+ value: 32.336
156
+ - type: mrr_at_100
157
+ value: 33.493
158
+ - type: mrr_at_1000
159
+ value: 33.568999999999996
160
+ - type: mrr_at_3
161
+ value: 29.807
162
+ - type: mrr_at_5
163
+ value: 31.294
164
+ - type: ndcg_at_1
165
+ value: 24.806
166
+ - type: ndcg_at_10
167
+ value: 30.341
168
+ - type: ndcg_at_100
169
+ value: 38.329
170
+ - type: ndcg_at_1000
171
+ value: 41.601
172
+ - type: ndcg_at_3
173
+ value: 25.655
174
+ - type: ndcg_at_5
175
+ value: 27.758
176
+ - type: precision_at_1
177
+ value: 24.806
178
+ - type: precision_at_10
179
+ value: 7.119000000000001
180
+ - type: precision_at_100
181
+ value: 1.3679999999999999
182
+ - type: precision_at_1000
183
+ value: 0.179
184
+ - type: precision_at_3
185
+ value: 14.787
186
+ - type: precision_at_5
187
+ value: 11.208
188
+ - type: recall_at_1
189
+ value: 15.715000000000002
190
+ - type: recall_at_10
191
+ value: 39.519999999999996
192
+ - type: recall_at_100
193
+ value: 73.307
194
+ - type: recall_at_1000
195
+ value: 95.611
196
+ - type: recall_at_3
197
+ value: 26.026
198
+ - type: recall_at_5
199
+ value: 32.027
200
+ - task:
201
+ type: PairClassification
202
+ dataset:
203
+ type: C-MTEB/CMNLI
204
+ name: MTEB Cmnli
205
+ config: default
206
+ split: validation
207
+ revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
208
+ metrics:
209
+ - type: cos_sim_accuracy
210
+ value: 66.89116055321708
211
+ - type: cos_sim_ap
212
+ value: 75.66575745519994
213
+ - type: cos_sim_f1
214
+ value: 70.2448775612194
215
+ - type: cos_sim_precision
216
+ value: 61.347765363128495
217
+ - type: cos_sim_recall
218
+ value: 82.16039279869068
219
+ - type: dot_accuracy
220
+ value: 66.89116055321708
221
+ - type: dot_ap
222
+ value: 75.68262052264197
223
+ - type: dot_f1
224
+ value: 70.2448775612194
225
+ - type: dot_precision
226
+ value: 61.347765363128495
227
+ - type: dot_recall
228
+ value: 82.16039279869068
229
+ - type: euclidean_accuracy
230
+ value: 66.89116055321708
231
+ - type: euclidean_ap
232
+ value: 75.66576722188334
233
+ - type: euclidean_f1
234
+ value: 70.2448775612194
235
+ - type: euclidean_precision
236
+ value: 61.347765363128495
237
+ - type: euclidean_recall
238
+ value: 82.16039279869068
239
+ - type: manhattan_accuracy
240
+ value: 67.03547805171377
241
+ - type: manhattan_ap
242
+ value: 75.78816934864089
243
+ - type: manhattan_f1
244
+ value: 70.35407081416284
245
+ - type: manhattan_precision
246
+ value: 61.4752665617899
247
+ - type: manhattan_recall
248
+ value: 82.23053542202479
249
+ - type: max_accuracy
250
+ value: 67.03547805171377
251
+ - type: max_ap
252
+ value: 75.78816934864089
253
+ - type: max_f1
254
+ value: 70.35407081416284
255
+ - task:
256
+ type: Retrieval
257
+ dataset:
258
+ type: C-MTEB/CovidRetrieval
259
+ name: MTEB CovidRetrieval
260
+ config: default
261
+ split: dev
262
+ revision: None
263
+ metrics:
264
+ - type: map_at_1
265
+ value: 41.57
266
+ - type: map_at_10
267
+ value: 52.932
268
+ - type: map_at_100
269
+ value: 53.581999999999994
270
+ - type: map_at_1000
271
+ value: 53.61900000000001
272
+ - type: map_at_3
273
+ value: 50.066
274
+ - type: map_at_5
275
+ value: 51.735
276
+ - type: mrr_at_1
277
+ value: 41.623
278
+ - type: mrr_at_10
279
+ value: 52.964999999999996
280
+ - type: mrr_at_100
281
+ value: 53.6
282
+ - type: mrr_at_1000
283
+ value: 53.637
284
+ - type: mrr_at_3
285
+ value: 50.158
286
+ - type: mrr_at_5
287
+ value: 51.786
288
+ - type: ndcg_at_1
289
+ value: 41.623
290
+ - type: ndcg_at_10
291
+ value: 58.55200000000001
292
+ - type: ndcg_at_100
293
+ value: 61.824999999999996
294
+ - type: ndcg_at_1000
295
+ value: 62.854
296
+ - type: ndcg_at_3
297
+ value: 52.729000000000006
298
+ - type: ndcg_at_5
299
+ value: 55.696999999999996
300
+ - type: precision_at_1
301
+ value: 41.623
302
+ - type: precision_at_10
303
+ value: 7.692
304
+ - type: precision_at_100
305
+ value: 0.927
306
+ - type: precision_at_1000
307
+ value: 0.101
308
+ - type: precision_at_3
309
+ value: 20.162
310
+ - type: precision_at_5
311
+ value: 13.572000000000001
312
+ - type: recall_at_1
313
+ value: 41.57
314
+ - type: recall_at_10
315
+ value: 76.185
316
+ - type: recall_at_100
317
+ value: 91.728
318
+ - type: recall_at_1000
319
+ value: 99.895
320
+ - type: recall_at_3
321
+ value: 60.27400000000001
322
+ - type: recall_at_5
323
+ value: 67.46600000000001
324
+ - task:
325
+ type: Retrieval
326
+ dataset:
327
+ type: C-MTEB/DuRetrieval
328
+ name: MTEB DuRetrieval
329
+ config: default
330
+ split: dev
331
+ revision: None
332
+ metrics:
333
+ - type: map_at_1
334
+ value: 21.071
335
+ - type: map_at_10
336
+ value: 65.093
337
+ - type: map_at_100
338
+ value: 69.097
339
+ - type: map_at_1000
340
+ value: 69.172
341
+ - type: map_at_3
342
+ value: 44.568000000000005
343
+ - type: map_at_5
344
+ value: 56.016999999999996
345
+ - type: mrr_at_1
346
+ value: 76.35
347
+ - type: mrr_at_10
348
+ value: 83.721
349
+ - type: mrr_at_100
350
+ value: 83.899
351
+ - type: mrr_at_1000
352
+ value: 83.904
353
+ - type: mrr_at_3
354
+ value: 82.958
355
+ - type: mrr_at_5
356
+ value: 83.488
357
+ - type: ndcg_at_1
358
+ value: 76.35
359
+ - type: ndcg_at_10
360
+ value: 75.05199999999999
361
+ - type: ndcg_at_100
362
+ value: 80.596
363
+ - type: ndcg_at_1000
364
+ value: 81.394
365
+ - type: ndcg_at_3
366
+ value: 73.298
367
+ - type: ndcg_at_5
368
+ value: 72.149
369
+ - type: precision_at_1
370
+ value: 76.35
371
+ - type: precision_at_10
372
+ value: 36.96
373
+ - type: precision_at_100
374
+ value: 4.688
375
+ - type: precision_at_1000
376
+ value: 0.48700000000000004
377
+ - type: precision_at_3
378
+ value: 66.2
379
+ - type: precision_at_5
380
+ value: 55.81
381
+ - type: recall_at_1
382
+ value: 21.071
383
+ - type: recall_at_10
384
+ value: 77.459
385
+ - type: recall_at_100
386
+ value: 94.425
387
+ - type: recall_at_1000
388
+ value: 98.631
389
+ - type: recall_at_3
390
+ value: 48.335
391
+ - type: recall_at_5
392
+ value: 63.227999999999994
393
+ - task:
394
+ type: Retrieval
395
+ dataset:
396
+ type: C-MTEB/EcomRetrieval
397
+ name: MTEB EcomRetrieval
398
+ config: default
399
+ split: dev
400
+ revision: None
401
+ metrics:
402
+ - type: map_at_1
403
+ value: 36.3
404
+ - type: map_at_10
405
+ value: 46.888999999999996
406
+ - type: map_at_100
407
+ value: 47.789
408
+ - type: map_at_1000
409
+ value: 47.827999999999996
410
+ - type: map_at_3
411
+ value: 43.85
412
+ - type: map_at_5
413
+ value: 45.58
414
+ - type: mrr_at_1
415
+ value: 36.3
416
+ - type: mrr_at_10
417
+ value: 46.888999999999996
418
+ - type: mrr_at_100
419
+ value: 47.789
420
+ - type: mrr_at_1000
421
+ value: 47.827999999999996
422
+ - type: mrr_at_3
423
+ value: 43.85
424
+ - type: mrr_at_5
425
+ value: 45.58
426
+ - type: ndcg_at_1
427
+ value: 36.3
428
+ - type: ndcg_at_10
429
+ value: 52.539
430
+ - type: ndcg_at_100
431
+ value: 56.882
432
+ - type: ndcg_at_1000
433
+ value: 57.841
434
+ - type: ndcg_at_3
435
+ value: 46.303
436
+ - type: ndcg_at_5
437
+ value: 49.406
438
+ - type: precision_at_1
439
+ value: 36.3
440
+ - type: precision_at_10
441
+ value: 7.049999999999999
442
+ - type: precision_at_100
443
+ value: 0.907
444
+ - type: precision_at_1000
445
+ value: 0.098
446
+ - type: precision_at_3
447
+ value: 17.8
448
+ - type: precision_at_5
449
+ value: 12.18
450
+ - type: recall_at_1
451
+ value: 36.3
452
+ - type: recall_at_10
453
+ value: 70.5
454
+ - type: recall_at_100
455
+ value: 90.7
456
+ - type: recall_at_1000
457
+ value: 98.1
458
+ - type: recall_at_3
459
+ value: 53.400000000000006
460
+ - type: recall_at_5
461
+ value: 60.9
462
+ - task:
463
+ type: Classification
464
+ dataset:
465
+ type: C-MTEB/IFlyTek-classification
466
+ name: MTEB IFlyTek
467
+ config: default
468
+ split: validation
469
+ revision: 421605374b29664c5fc098418fe20ada9bd55f8a
470
+ metrics:
471
+ - type: accuracy
472
+ value: 50.927279722970376
473
+ - type: f1
474
+ value: 39.57514582425314
475
+ - task:
476
+ type: Classification
477
+ dataset:
478
+ type: C-MTEB/JDReview-classification
479
+ name: MTEB JDReview
480
+ config: default
481
+ split: test
482
+ revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
483
+ metrics:
484
+ - type: accuracy
485
+ value: 84.93433395872421
486
+ - type: ap
487
+ value: 50.35046267230439
488
+ - type: f1
489
+ value: 78.76452515604298
490
+ - task:
491
+ type: STS
492
+ dataset:
493
+ type: C-MTEB/LCQMC
494
+ name: MTEB LCQMC
495
+ config: default
496
+ split: test
497
+ revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
498
+ metrics:
499
+ - type: cos_sim_pearson
500
+ value: 67.40319768112933
501
+ - type: cos_sim_spearman
502
+ value: 74.9867527749418
503
+ - type: euclidean_pearson
504
+ value: 74.08762625643878
505
+ - type: euclidean_spearman
506
+ value: 74.98675720634276
507
+ - type: manhattan_pearson
508
+ value: 73.86303861791671
509
+ - type: manhattan_spearman
510
+ value: 75.0594224188492
511
+ - task:
512
+ type: Reranking
513
+ dataset:
514
+ type: C-MTEB/Mmarco-reranking
515
+ name: MTEB MMarcoReranking
516
+ config: default
517
+ split: dev
518
+ revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
519
+ metrics:
520
+ - type: map
521
+ value: 18.860945903258536
522
+ - type: mrr
523
+ value: 17.686507936507937
524
+ - task:
525
+ type: Retrieval
526
+ dataset:
527
+ type: C-MTEB/MMarcoRetrieval
528
+ name: MTEB MMarcoRetrieval
529
+ config: default
530
+ split: dev
531
+ revision: None
532
+ metrics:
533
+ - type: map_at_1
534
+ value: 49.16
535
+ - type: map_at_10
536
+ value: 57.992
537
+ - type: map_at_100
538
+ value: 58.638
539
+ - type: map_at_1000
540
+ value: 58.67
541
+ - type: map_at_3
542
+ value: 55.71
543
+ - type: map_at_5
544
+ value: 57.04900000000001
545
+ - type: mrr_at_1
546
+ value: 50.989
547
+ - type: mrr_at_10
548
+ value: 58.814
549
+ - type: mrr_at_100
550
+ value: 59.401
551
+ - type: mrr_at_1000
552
+ value: 59.431
553
+ - type: mrr_at_3
554
+ value: 56.726
555
+ - type: mrr_at_5
556
+ value: 57.955
557
+ - type: ndcg_at_1
558
+ value: 50.989
559
+ - type: ndcg_at_10
560
+ value: 62.259
561
+ - type: ndcg_at_100
562
+ value: 65.347
563
+ - type: ndcg_at_1000
564
+ value: 66.231
565
+ - type: ndcg_at_3
566
+ value: 57.78
567
+ - type: ndcg_at_5
568
+ value: 60.09100000000001
569
+ - type: precision_at_1
570
+ value: 50.989
571
+ - type: precision_at_10
572
+ value: 7.9479999999999995
573
+ - type: precision_at_100
574
+ value: 0.951
575
+ - type: precision_at_1000
576
+ value: 0.10200000000000001
577
+ - type: precision_at_3
578
+ value: 22.087
579
+ - type: precision_at_5
580
+ value: 14.479000000000001
581
+ - type: recall_at_1
582
+ value: 49.16
583
+ - type: recall_at_10
584
+ value: 74.792
585
+ - type: recall_at_100
586
+ value: 89.132
587
+ - type: recall_at_1000
588
+ value: 96.13199999999999
589
+ - type: recall_at_3
590
+ value: 62.783
591
+ - type: recall_at_5
592
+ value: 68.26100000000001
593
+ - task:
594
+ type: Retrieval
595
+ dataset:
596
+ type: C-MTEB/MedicalRetrieval
597
+ name: MTEB MedicalRetrieval
598
+ config: default
599
+ split: dev
600
+ revision: None
601
+ metrics:
602
+ - type: map_at_1
603
+ value: 40.5
604
+ - type: map_at_10
605
+ value: 46.892
606
+ - type: map_at_100
607
+ value: 47.579
608
+ - type: map_at_1000
609
+ value: 47.648
610
+ - type: map_at_3
611
+ value: 45.367000000000004
612
+ - type: map_at_5
613
+ value: 46.182
614
+ - type: mrr_at_1
615
+ value: 40.6
616
+ - type: mrr_at_10
617
+ value: 46.942
618
+ - type: mrr_at_100
619
+ value: 47.629
620
+ - type: mrr_at_1000
621
+ value: 47.698
622
+ - type: mrr_at_3
623
+ value: 45.417
624
+ - type: mrr_at_5
625
+ value: 46.232
626
+ - type: ndcg_at_1
627
+ value: 40.5
628
+ - type: ndcg_at_10
629
+ value: 50.078
630
+ - type: ndcg_at_100
631
+ value: 53.635999999999996
632
+ - type: ndcg_at_1000
633
+ value: 55.696999999999996
634
+ - type: ndcg_at_3
635
+ value: 46.847
636
+ - type: ndcg_at_5
637
+ value: 48.323
638
+ - type: precision_at_1
639
+ value: 40.5
640
+ - type: precision_at_10
641
+ value: 6.02
642
+ - type: precision_at_100
643
+ value: 0.773
644
+ - type: precision_at_1000
645
+ value: 0.094
646
+ - type: precision_at_3
647
+ value: 17.033
648
+ - type: precision_at_5
649
+ value: 10.94
650
+ - type: recall_at_1
651
+ value: 40.5
652
+ - type: recall_at_10
653
+ value: 60.199999999999996
654
+ - type: recall_at_100
655
+ value: 77.3
656
+ - type: recall_at_1000
657
+ value: 94.0
658
+ - type: recall_at_3
659
+ value: 51.1
660
+ - type: recall_at_5
661
+ value: 54.7
662
+ - task:
663
+ type: Classification
664
+ dataset:
665
+ type: C-MTEB/MultilingualSentiment-classification
666
+ name: MTEB MultilingualSentiment
667
+ config: default
668
+ split: validation
669
+ revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
670
+ metrics:
671
+ - type: accuracy
672
+ value: 55.90333333333333
673
+ - type: f1
674
+ value: 55.291185234519546
675
+ - task:
676
+ type: PairClassification
677
+ dataset:
678
+ type: C-MTEB/OCNLI
679
+ name: MTEB Ocnli
680
+ config: default
681
+ split: validation
682
+ revision: 66e76a618a34d6d565d5538088562851e6daa7ec
683
+ metrics:
684
+ - type: cos_sim_accuracy
685
+ value: 59.01461829994585
686
+ - type: cos_sim_ap
687
+ value: 61.84829541140869
688
+ - type: cos_sim_f1
689
+ value: 67.94150731158605
690
+ - type: cos_sim_precision
691
+ value: 52.674418604651166
692
+ - type: cos_sim_recall
693
+ value: 95.67053854276664
694
+ - type: dot_accuracy
695
+ value: 59.01461829994585
696
+ - type: dot_ap
697
+ value: 61.84829541140869
698
+ - type: dot_f1
699
+ value: 67.94150731158605
700
+ - type: dot_precision
701
+ value: 52.674418604651166
702
+ - type: dot_recall
703
+ value: 95.67053854276664
704
+ - type: euclidean_accuracy
705
+ value: 59.01461829994585
706
+ - type: euclidean_ap
707
+ value: 61.84829541140869
708
+ - type: euclidean_f1
709
+ value: 67.94150731158605
710
+ - type: euclidean_precision
711
+ value: 52.674418604651166
712
+ - type: euclidean_recall
713
+ value: 95.67053854276664
714
+ - type: manhattan_accuracy
715
+ value: 59.06876015159719
716
+ - type: manhattan_ap
717
+ value: 61.91217952354554
718
+ - type: manhattan_f1
719
+ value: 67.89059572873735
720
+ - type: manhattan_precision
721
+ value: 52.613240418118465
722
+ - type: manhattan_recall
723
+ value: 95.67053854276664
724
+ - type: max_accuracy
725
+ value: 59.06876015159719
726
+ - type: max_ap
727
+ value: 61.91217952354554
728
+ - type: max_f1
729
+ value: 67.94150731158605
730
+ - task:
731
+ type: Classification
732
+ dataset:
733
+ type: C-MTEB/OnlineShopping-classification
734
+ name: MTEB OnlineShopping
735
+ config: default
736
+ split: test
737
+ revision: e610f2ebd179a8fda30ae534c3878750a96db120
738
+ metrics:
739
+ - type: accuracy
740
+ value: 82.53
741
+ - type: ap
742
+ value: 77.67591637020448
743
+ - type: f1
744
+ value: 82.39976599130478
745
+ - task:
746
+ type: STS
747
+ dataset:
748
+ type: C-MTEB/PAWSX
749
+ name: MTEB PAWSX
750
+ config: default
751
+ split: test
752
+ revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
753
+ metrics:
754
+ - type: cos_sim_pearson
755
+ value: 55.76388035743312
756
+ - type: cos_sim_spearman
757
+ value: 58.34768166139753
758
+ - type: euclidean_pearson
759
+ value: 57.971763429924074
760
+ - type: euclidean_spearman
761
+ value: 58.34750745303424
762
+ - type: manhattan_pearson
763
+ value: 58.044053497280245
764
+ - type: manhattan_spearman
765
+ value: 58.61627719613188
766
+ - task:
767
+ type: PairClassification
768
+ dataset:
769
+ type: paws-x
770
+ name: MTEB PawsX (zh)
771
+ config: zh
772
+ split: test
773
+ revision: 8a04d940a42cd40658986fdd8e3da561533a3646
774
+ metrics:
775
+ - type: cos_sim_accuracy
776
+ value: 75.75
777
+ - type: cos_sim_ap
778
+ value: 78.80617392926526
779
+ - type: cos_sim_f1
780
+ value: 75.92417061611374
781
+ - type: cos_sim_precision
782
+ value: 65.87171052631578
783
+ - type: cos_sim_recall
784
+ value: 89.59731543624162
785
+ - type: dot_accuracy
786
+ value: 75.75
787
+ - type: dot_ap
788
+ value: 78.83768586994135
789
+ - type: dot_f1
790
+ value: 75.92417061611374
791
+ - type: dot_precision
792
+ value: 65.87171052631578
793
+ - type: dot_recall
794
+ value: 89.59731543624162
795
+ - type: euclidean_accuracy
796
+ value: 75.75
797
+ - type: euclidean_ap
798
+ value: 78.80617392926526
799
+ - type: euclidean_f1
800
+ value: 75.92417061611374
801
+ - type: euclidean_precision
802
+ value: 65.87171052631578
803
+ - type: euclidean_recall
804
+ value: 89.59731543624162
805
+ - type: manhattan_accuracy
806
+ value: 75.75
807
+ - type: manhattan_ap
808
+ value: 78.98640478955386
809
+ - type: manhattan_f1
810
+ value: 75.92954990215264
811
+ - type: manhattan_precision
812
+ value: 67.47826086956522
813
+ - type: manhattan_recall
814
+ value: 86.80089485458613
815
+ - type: max_accuracy
816
+ value: 75.75
817
+ - type: max_ap
818
+ value: 78.98640478955386
819
+ - type: max_f1
820
+ value: 75.92954990215264
821
+ - task:
822
+ type: STS
823
+ dataset:
824
+ type: C-MTEB/QBQTC
825
+ name: MTEB QBQTC
826
+ config: default
827
+ split: test
828
+ revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
829
+ metrics:
830
+ - type: cos_sim_pearson
831
+ value: 74.40348414238575
832
+ - type: cos_sim_spearman
833
+ value: 71.452270332177
834
+ - type: euclidean_pearson
835
+ value: 72.62509231589097
836
+ - type: euclidean_spearman
837
+ value: 71.45228258458943
838
+ - type: manhattan_pearson
839
+ value: 73.03846856200839
840
+ - type: manhattan_spearman
841
+ value: 71.43673225319574
842
+ - task:
843
+ type: STS
844
+ dataset:
845
+ type: mteb/sts22-crosslingual-sts
846
+ name: MTEB STS22 (zh)
847
+ config: zh
848
+ split: test
849
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
850
+ metrics:
851
+ - type: cos_sim_pearson
852
+ value: 75.38335474357001
853
+ - type: cos_sim_spearman
854
+ value: 74.92262892309807
855
+ - type: euclidean_pearson
856
+ value: 73.93451693251345
857
+ - type: euclidean_spearman
858
+ value: 74.92262892309807
859
+ - type: manhattan_pearson
860
+ value: 74.55911294300788
861
+ - type: manhattan_spearman
862
+ value: 74.89436791272614
863
+ - task:
864
+ type: STS
865
+ dataset:
866
+ type: C-MTEB/STSB
867
+ name: MTEB STSB
868
+ config: default
869
+ split: test
870
+ revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
871
+ metrics:
872
+ - type: cos_sim_pearson
873
+ value: 83.01687361650126
874
+ - type: cos_sim_spearman
875
+ value: 82.74413230806265
876
+ - type: euclidean_pearson
877
+ value: 81.50177295189083
878
+ - type: euclidean_spearman
879
+ value: 82.74413230806265
880
+ - type: manhattan_pearson
881
+ value: 81.90798387028589
882
+ - type: manhattan_spearman
883
+ value: 82.65064251275778
884
+ - task:
885
+ type: Reranking
886
+ dataset:
887
+ type: C-MTEB/T2Reranking
888
+ name: MTEB T2Reranking
889
+ config: default
890
+ split: dev
891
+ revision: 76631901a18387f85eaa53e5450019b87ad58ef9
892
+ metrics:
893
+ - type: map
894
+ value: 66.25459669294304
895
+ - type: mrr
896
+ value: 76.76845224661744
897
+ - task:
898
+ type: Retrieval
899
+ dataset:
900
+ type: C-MTEB/T2Retrieval
901
+ name: MTEB T2Retrieval
902
+ config: default
903
+ split: dev
904
+ revision: None
905
+ metrics:
906
+ - type: map_at_1
907
+ value: 22.515
908
+ - type: map_at_10
909
+ value: 63.63999999999999
910
+ - type: map_at_100
911
+ value: 67.67
912
+ - type: map_at_1000
913
+ value: 67.792
914
+ - type: map_at_3
915
+ value: 44.239
916
+ - type: map_at_5
917
+ value: 54.54599999999999
918
+ - type: mrr_at_1
919
+ value: 79.752
920
+ - type: mrr_at_10
921
+ value: 83.525
922
+ - type: mrr_at_100
923
+ value: 83.753
924
+ - type: mrr_at_1000
925
+ value: 83.763
926
+ - type: mrr_at_3
927
+ value: 82.65599999999999
928
+ - type: mrr_at_5
929
+ value: 83.192
930
+ - type: ndcg_at_1
931
+ value: 79.752
932
+ - type: ndcg_at_10
933
+ value: 72.699
934
+ - type: ndcg_at_100
935
+ value: 78.145
936
+ - type: ndcg_at_1000
937
+ value: 79.481
938
+ - type: ndcg_at_3
939
+ value: 74.401
940
+ - type: ndcg_at_5
941
+ value: 72.684
942
+ - type: precision_at_1
943
+ value: 79.752
944
+ - type: precision_at_10
945
+ value: 37.163000000000004
946
+ - type: precision_at_100
947
+ value: 4.769
948
+ - type: precision_at_1000
949
+ value: 0.508
950
+ - type: precision_at_3
951
+ value: 65.67399999999999
952
+ - type: precision_at_5
953
+ value: 55.105000000000004
954
+ - type: recall_at_1
955
+ value: 22.515
956
+ - type: recall_at_10
957
+ value: 71.816
958
+ - type: recall_at_100
959
+ value: 89.442
960
+ - type: recall_at_1000
961
+ value: 96.344
962
+ - type: recall_at_3
963
+ value: 46.208
964
+ - type: recall_at_5
965
+ value: 58.695
966
+ - task:
967
+ type: Classification
968
+ dataset:
969
+ type: C-MTEB/TNews-classification
970
+ name: MTEB TNews
971
+ config: default
972
+ split: validation
973
+ revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
974
+ metrics:
975
+ - type: accuracy
976
+ value: 55.077999999999996
977
+ - type: f1
978
+ value: 53.2447237349446
979
+ - task:
980
+ type: Clustering
981
+ dataset:
982
+ type: C-MTEB/ThuNewsClusteringP2P
983
+ name: MTEB ThuNewsClusteringP2P
984
+ config: default
985
+ split: test
986
+ revision: 5798586b105c0434e4f0fe5e767abe619442cf93
987
+ metrics:
988
+ - type: v_measure
989
+ value: 59.50582115422618
990
+ - task:
991
+ type: Clustering
992
+ dataset:
993
+ type: C-MTEB/ThuNewsClusteringS2S
994
+ name: MTEB ThuNewsClusteringS2S
995
+ config: default
996
+ split: test
997
+ revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
998
+ metrics:
999
+ - type: v_measure
1000
+ value: 54.71907850412647
1001
+ - task:
1002
+ type: Retrieval
1003
+ dataset:
1004
+ type: C-MTEB/VideoRetrieval
1005
+ name: MTEB VideoRetrieval
1006
+ config: default
1007
+ split: dev
1008
+ revision: None
1009
+ metrics:
1010
+ - type: map_at_1
1011
+ value: 49.4
1012
+ - type: map_at_10
1013
+ value: 59.245999999999995
1014
+ - type: map_at_100
1015
+ value: 59.811
1016
+ - type: map_at_1000
1017
+ value: 59.836
1018
+ - type: map_at_3
1019
+ value: 56.733
1020
+ - type: map_at_5
1021
+ value: 58.348
1022
+ - type: mrr_at_1
1023
+ value: 49.4
1024
+ - type: mrr_at_10
1025
+ value: 59.245999999999995
1026
+ - type: mrr_at_100
1027
+ value: 59.811
1028
+ - type: mrr_at_1000
1029
+ value: 59.836
1030
+ - type: mrr_at_3
1031
+ value: 56.733
1032
+ - type: mrr_at_5
1033
+ value: 58.348
1034
+ - type: ndcg_at_1
1035
+ value: 49.4
1036
+ - type: ndcg_at_10
1037
+ value: 64.08
1038
+ - type: ndcg_at_100
1039
+ value: 67.027
1040
+ - type: ndcg_at_1000
1041
+ value: 67.697
1042
+ - type: ndcg_at_3
1043
+ value: 58.995
1044
+ - type: ndcg_at_5
1045
+ value: 61.891
1046
+ - type: precision_at_1
1047
+ value: 49.4
1048
+ - type: precision_at_10
1049
+ value: 7.93
1050
+ - type: precision_at_100
1051
+ value: 0.935
1052
+ - type: precision_at_1000
1053
+ value: 0.099
1054
+ - type: precision_at_3
1055
+ value: 21.833
1056
+ - type: precision_at_5
1057
+ value: 14.499999999999998
1058
+ - type: recall_at_1
1059
+ value: 49.4
1060
+ - type: recall_at_10
1061
+ value: 79.3
1062
+ - type: recall_at_100
1063
+ value: 93.5
1064
+ - type: recall_at_1000
1065
+ value: 98.8
1066
+ - type: recall_at_3
1067
+ value: 65.5
1068
+ - type: recall_at_5
1069
+ value: 72.5
1070
+ - task:
1071
+ type: Classification
1072
+ dataset:
1073
+ type: C-MTEB/waimai-classification
1074
+ name: MTEB Waimai
1075
+ config: default
1076
+ split: test
1077
+ revision: 339287def212450dcaa9df8c22bf93e9980c7023
1078
+ metrics:
1079
+ - type: accuracy
1080
+ value: 81.16
1081
+ - type: ap
1082
+ value: 60.864524843400616
1083
+ - type: f1
1084
+ value: 79.41246877404483
1085
+
1086
+ ```
1087
+
1088
+ ZNV Embedding utilizes a 6B LLM (Large Language Model) for embedding, achieving excellent embedding results.
1089
+
1090
+ In a single inference, we used two prompts to extract two different embeddings for a sentence, and then concatenated them.
1091
+
1092
+ Model usage method:
1093
+
1094
+
1095
+ 1. Define ZNVEmbeddingModel
1096
+ ```python
1097
+ import os
1098
+ from transformers import (
1099
+ LlamaForCausalLM,
1100
+ LlamaTokenizer, AutoConfig,
1101
+ )
1102
+ import torch
1103
+ import torch.nn.functional as F
1104
+ import numpy as np
1105
+
1106
+
1107
+ class ZNVEmbeddingModel(torch.nn.Module):
1108
+ def __init__(self, model_name_or_path):
1109
+ super(ZNVEmbeddingModel, self).__init__()
1110
+ self.prompt_prefix = "阅读下文,然后答题\n"
1111
+ self.prompt_suffixes = ["\n1.一个字总结上文的意思是:",
1112
+ "\n2.上文深层次的意思是:"]
1113
+ self.hidden_size = 4096
1114
+ self.model_name_or_path = model_name_or_path
1115
+ self.linear_suffixes = torch.nn.ModuleList(
1116
+ [torch.nn.Linear(self.hidden_size, self.hidden_size//len(self.prompt_suffixes))
1117
+ for _ in range(len(self.prompt_suffixes))])
1118
+ self.tokenizer, self.llama = self.load_llama()
1119
+
1120
+ self.tanh = torch.nn.Tanh()
1121
+ self.suffixes_ids = []
1122
+ self.suffixes_ids_len = []
1123
+ self.suffixes_len = 0
1124
+ for suffix in self.prompt_suffixes:
1125
+ ids = self.tokenizer(suffix, return_tensors="pt")["input_ids"].tolist()[0]
1126
+ self.suffixes_ids += ids
1127
+ self.suffixes_ids_len.append(len(ids))
1128
+ self.suffixes_len += len(ids)
1129
+
1130
+ self.suffixes_ones = torch.ones(self.suffixes_len)
1131
+ self.suffixes_ids = torch.tensor(self.suffixes_ids)
1132
+
1133
+ linear_file = os.path.join(model_name_or_path, "linears")
1134
+ load_layers = torch.load(linear_file)
1135
+ model_state = self.state_dict()
1136
+ model_state.update(load_layers)
1137
+ self.load_state_dict(model_state, strict=False)
1138
+
1139
+ def load_llama(self):
1140
+ llm_path = os.path.join(self.model_name_or_path)
1141
+ config = AutoConfig.from_pretrained(llm_path)
1142
+ tokenizer = LlamaTokenizer.from_pretrained(self.model_name_or_path)
1143
+ tokenizer.padding_side = "left"
1144
+ model = LlamaForCausalLM.from_pretrained(
1145
+ llm_path,
1146
+ config=config,
1147
+ low_cpu_mem_usage=True
1148
+ )
1149
+ model.config.use_cache = False
1150
+ return tokenizer, model
1151
+
1152
+ def forward(self, sentences):
1153
+ prompts_embeddings = []
1154
+ sentences = [self.prompt_prefix + s for s in sentences]
1155
+ inputs = self.tokenizer(sentences, max_length=256, padding=True, truncation=True,
1156
+ return_tensors='pt')
1157
+ attention_mask = inputs["attention_mask"]
1158
+ input_ids = inputs["input_ids"]
1159
+ batch_size = len(sentences)
1160
+ suffixes_ones = self.suffixes_ones.unsqueeze(0)
1161
+ suffixes_ones = suffixes_ones.repeat(batch_size, 1)
1162
+ device = next(self.parameters()).device
1163
+ attention_mask = torch.cat([attention_mask, suffixes_ones], dim=-1).to(device)
1164
+
1165
+ suffixes_ids = self.suffixes_ids.unsqueeze(0)
1166
+ suffixes_ids = suffixes_ids.repeat(batch_size, 1)
1167
+ input_ids = torch.cat([input_ids, suffixes_ids], dim=-1).to(device)
1168
+ last_hidden_state = self.llama.base_model.base_model(attention_mask=attention_mask, input_ids=input_ids).last_hidden_state
1169
+ index = -1
1170
+ for i in range(len(self.suffixes_ids_len)):
1171
+ embedding = last_hidden_state[:, index, :]
1172
+ embedding = self.linear_suffixes[i](embedding)
1173
+ prompts_embeddings.append(embedding)
1174
+ index -= self.suffixes_ids_len[-i-1]
1175
+
1176
+ output_embedding = torch.cat(prompts_embeddings, dim=-1)
1177
+ output_embedding = self.tanh(output_embedding)
1178
+ output_embedding = F.normalize(output_embedding, p=2, dim=1)
1179
+ return output_embedding
1180
+
1181
+ def encode(self, sentences, batch_size=10, **kwargs):
1182
+ size = len(sentences)
1183
+ embeddings = None
1184
+ handled = 0
1185
+ while handled < size:
1186
+ tokens = sentences[handled:handled + batch_size]
1187
+ output_embeddings = self.forward(tokens)
1188
+ result = output_embeddings.cpu().numpy()
1189
+ handled += result.shape[0]
1190
+ if embeddings is not None:
1191
+ embeddings = np.concatenate((embeddings, result), axis=0)
1192
+ else:
1193
+ embeddings = result
1194
+ return embeddings
1195
+ ```
1196
+
1197
+
1198
+ 2. Use ZNVEmbeddingModel for Embedding.
1199
+ ```python
1200
+ znv_model = ZNVEmbeddingModel("your_model_path")
1201
+ znv_model.eval()
1202
+ with torch.no_grad():
1203
+ output = znv_model(["请问你的电话号码是多少?","可以告诉我你的手机号吗?"])
1204
+ cos_sim = F.cosine_similarity(output[0],output[1],dim=0)
1205
+ print(cos_sim)
1206
+ ```
1207
+