--- base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Bir öğrenci her gün 5 sayfa kitap okuyor. 5 gün süresince kaç sayfa kitap okur? - text: Bir inşaat firmasında 74 işçi vardı, Firma 29 işçi daha işe aldı. Firmada şimdi kaç işçi var? - text: If you have 4 coins that total 35 cents, and 3 of them are dimes, what is the other coin? - text: Bir üçgenin tabanı 12 cm, yüksekliği 8 cm'dir. Üçgenin alanı kaç cm²'dir? - text: Bir üçgenin kenar uzunlukları 8 cm, 10 cm ve 12 cm'dir. Üçgenin çevresi kaç cm'dir? inference: true model-index: - name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | non_math | | | math | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 1.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("serdarcaglar/primary-school-math-question-multi-lang") # Run inference preds = model("Bir üçgenin tabanı 12 cm, yüksekliği 8 cm'dir. Üçgenin alanı kaç cm²'dir?") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 10.3435 | 33 | | Label | Training Sample Count | |:---------|:----------------------| | math | 459 | | non_math | 129 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0007 | 1 | 0.1982 | - | | 0.0340 | 50 | 0.1009 | - | | 0.0680 | 100 | 0.0054 | - | | 0.1020 | 150 | 0.002 | - | | 0.1361 | 200 | 0.001 | - | | 0.1701 | 250 | 0.0023 | - | | 0.2041 | 300 | 0.0002 | - | | 0.2381 | 350 | 0.0013 | - | | 0.2721 | 400 | 0.0004 | - | | 0.3061 | 450 | 0.0004 | - | | 0.3401 | 500 | 0.0002 | - | | 0.3741 | 550 | 0.0001 | - | | 0.4082 | 600 | 0.0001 | - | | 0.4422 | 650 | 0.0002 | - | | 0.4762 | 700 | 0.0001 | - | | 0.5102 | 750 | 0.0001 | - | | 0.5442 | 800 | 0.0002 | - | | 0.5782 | 850 | 0.0002 | - | | 0.6122 | 900 | 0.0001 | - | | 0.6463 | 950 | 0.0005 | - | | 0.6803 | 1000 | 0.0001 | - | | 0.7143 | 1050 | 0.0001 | - | | 0.7483 | 1100 | 0.0001 | - | | 0.7823 | 1150 | 0.0001 | - | | 0.8163 | 1200 | 0.0001 | - | | 0.8503 | 1250 | 0.0001 | - | | 0.8844 | 1300 | 0.0 | - | | 0.9184 | 1350 | 0.0002 | - | | 0.9524 | 1400 | 0.0001 | - | | 0.9864 | 1450 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - Transformers: 4.39.0 - PyTorch: 2.4.0+cu121 - Datasets: 2.21.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```