---
base_model: BAAI/bge-m3
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4532
- loss:CoSENTLoss
widget:
- source_sentence: портативный проектор umiio a 008
sentences:
- портативный проектор philips a 008
- logitech c270i iptv
- детский электромобиль sundays land rover jj012
- source_sentence: запчасти для швейных машин bernette
sentences:
- мфу samsung m428fdw
- запасные части для швейной машины bernette
- steelseries apex pro mini wireless
- source_sentence: сушильная машина maunfeld mfdm1410wh06
sentences:
- кухонные уголки
- сушильная машина simens mfdm1410wh06
- сетевой удлинитель евро eu-4 multi-protection 4usb qy-923 2500w
- source_sentence: монитор acer k242hql
sentences:
- multiflashlight armytek zippy green
- роутер mi router 4c r4cm dvb4231gl
- монитор acer k224hql
- source_sentence: набор моя первая кухня
sentences:
- кухонные наборы
- ea sports fc 23 ps4
- da vinci белая
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.9701810342203735
name: Pearson Cosine
- type: spearman_cosine
value: 0.9168792089469636
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9695654298959763
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.9165761310923896
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9696385323216731
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.9166348972420479
name: Spearman Euclidean
- type: pearson_dot
value: 0.9631206697635591
name: Pearson Dot
- type: spearman_dot
value: 0.9173046326579305
name: Spearman Dot
- type: pearson_max
value: 0.9701810342203735
name: Pearson Max
- type: spearman_max
value: 0.9173046326579305
name: Spearman Max
---
# SentenceTransformer based on BAAI/bge-m3
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3)
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("seregadgl101/test_bge_2_10ep")
# Run inference
sentences = [
'набор моя первая кухня',
'кухонные наборы',
'ea sports fc 23 ps4',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.9702 |
| **spearman_cosine** | **0.9169** |
| pearson_manhattan | 0.9696 |
| spearman_manhattan | 0.9166 |
| pearson_euclidean | 0.9696 |
| spearman_euclidean | 0.9166 |
| pearson_dot | 0.9631 |
| spearman_dot | 0.9173 |
| pearson_max | 0.9702 |
| spearman_max | 0.9173 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,532 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details |
батут evo jump internal 12ft
| батут evo jump internal 12ft
| 1.0
|
| наручные часы orient casual
| наручные часы orient
| 1.0
|
| электрический духовой шкаф weissgauff eov 19 mw
| электрический духовой шкаф weissgauff eov 19 mx
| 0.4
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 504 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | потолочный светильник yeelight smart led ceiling light c2001s500
| yeelight smart led ceiling light c2001s500
| 1.0
|
| канцелярские принадлежности
| канцелярские принадлежности разные
| 0.4
|
| usb-магнитола acv avs-1718g
| автомагнитола acv avs-1718g
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `warmup_ratio`: 0.1
- `save_only_model`: True
- `seed`: 33
- `fp16`: True
- `load_best_model_at_end`: True
#### All Hyperparameters