--- license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: DeBERTaV3_model results: [] --- # DeBERTaV3_model This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1419 - Accuracy: 0.9615 - F1: 0.8400 - Precision: 0.875 - Recall: 0.8077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 26 | 0.3810 | 0.875 | 0.0 | 0.0 | 0.0 | | No log | 2.0 | 52 | 0.3740 | 0.875 | 0.0 | 0.0 | 0.0 | | No log | 3.0 | 78 | 0.3303 | 0.875 | 0.0 | 0.0 | 0.0 | | No log | 4.0 | 104 | 0.2997 | 0.875 | 0.0 | 0.0 | 0.0 | | No log | 5.0 | 130 | 0.2484 | 0.8894 | 0.2581 | 0.8 | 0.1538 | | No log | 6.0 | 156 | 0.1951 | 0.9375 | 0.6977 | 0.8824 | 0.5769 | | No log | 7.0 | 182 | 0.1752 | 0.9423 | 0.7273 | 0.8889 | 0.6154 | | No log | 8.0 | 208 | 0.1582 | 0.9519 | 0.7917 | 0.8636 | 0.7308 | | No log | 9.0 | 234 | 0.1449 | 0.9615 | 0.8400 | 0.875 | 0.8077 | | No log | 10.0 | 260 | 0.1419 | 0.9615 | 0.8400 | 0.875 | 0.8077 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1